Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method

被引:21
|
作者
Fedorov, Dmitri G. [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Ctr Computat Design Adv Funct Mat CD FMat, Tsukuba, Ibaraki 3058568, Japan
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2020年 / 124卷 / 24期
关键词
FUNCTIONAL TIGHT-BINDING; ACCURATE CALCULATIONS; DYNAMICS SIMULATIONS; QUANTUM-CHEMISTRY; FMO CALCULATIONS; WATER CLUSTERS; X-RAY; IONS; PAIR; POTASSIUM;
D O I
10.1021/acs.jpca.0c03085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An energy decomposition analysis is developed for the three-body expansion of the fragment molecular orbital method at the level of density functional theory, density-functional tight-binding, coupled cluster, and other quantum-mechanical approaches in vacuum and solution. It is shown that the addition of three-body terms improves the accuracy of the components and the total energies. For a compact representation, three-body corrections can be incorporated into two-body interactions to reduce the complexity of the analysis. The method is applied to solvated alkali and halide ions, a nanocrystal of ice, and a Trp-cage protein (PDB: 1L2Y)-ligand complex.
引用
收藏
页码:4956 / 4971
页数:16
相关论文
共 50 条
  • [11] Three-Body Expansion of the Fragment Molecular Orbital Method Combined with Density-Functional Tight-Binding
    Nishimoto, Yoshio
    Fedorov, Dmitri G.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2017, 38 (07) : 406 - 418
  • [12] Three-body expansion and generalized dynamic fragmentation improve the fragment molecular orbital-based molecular dynamics (FMO-MD)
    Komeiji, Yuto
    Mochizuki, Yuji
    Nakano, Tatsuya
    CHEMICAL PHYSICS LETTERS, 2010, 484 (4-6) : 380 - 386
  • [13] Three-Body Expansion and Generalized Dynamic Fragmentation Improve the Fragment Molecular Orbital-Based Molecular Dynamics (fMO-MD), An ab Initio MD Method
    Komeiji, Yuto
    Mochizuki, Yuji
    Nakano, Tatsuya
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 573A - 573A
  • [14] Molecular orbital analysis based on fragment molecular orbital scheme
    Sekino, H
    Sengoku, Y
    Sugiki, S
    Kurita, N
    CHEMICAL PHYSICS LETTERS, 2003, 378 (5-6) : 589 - 597
  • [15] Application of resolution of identity approximation of second-order Møller–Plesset perturbation theory to three-body fragment molecular orbital method
    Michio Katouda
    Theoretical Chemistry Accounts, 2011, 130 : 449 - 453
  • [16] Application of resolution of identity approximation of second-order Moller-Plesset perturbation theory to three-body fragment molecular orbital method
    Katouda, Michio
    THEORETICAL CHEMISTRY ACCOUNTS, 2011, 130 (2-3) : 449 - 453
  • [17] Fragment molecular orbital method: analytical energy gradients
    Kitaura, K
    Sugiki, SI
    Nakano, T
    Komeiji, Y
    Uebayasi, M
    CHEMICAL PHYSICS LETTERS, 2001, 336 (1-2) : 163 - 170
  • [18] Accurate three-body noncovalent interactions: the insights from energy decomposition
    Ochieng, Sharon A.
    Patkowski, Konrad
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (42) : 28621 - 28637
  • [19] Progress of three-body orbital dynamics study
    Li X.
    Qiao D.
    Cheng Y.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (05): : 1223 - 1245
  • [20] Fully analytic energy gradient for the fragment molecular orbital method
    Nagata, Takeshi
    Brorsen, Kurt R.
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241