Fully analytic energy gradient in the fragment molecular orbital method

被引:89
|
作者
Nagata, Takeshi [1 ]
Brorsen, Kurt [2 ,3 ]
Fedorov, Dmitri G. [1 ]
Kitaura, Kazuo [1 ,4 ]
Gordon, Mark S. [2 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[2] US DOE, Ames Lab, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Chem, Ames, IA 50011 USA
[4] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 12期
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; POLARIZABLE CONTINUUM MODEL; DYNAMICS FMO-MD; AB-INITIO; FORCE-FIELD; PROTEIN-LIGAND; ENZYME CATALYSIS; LARGE SYSTEMS; SIMULATIONS; WATER;
D O I
10.1063/1.3568010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Z-vector equations are derived and implemented for solving the response term due to the external electrostatic potentials, and the corresponding contribution is added to the energy gradients in the framework of the fragment molecular orbital (FMO) method. To practically solve the equations for large molecules like proteins, the equations are decoupled by taking advantage of the local nature of fragments in the FMO method and establishing the self-consistent Z-vector method. The resulting gradients are compared with numerical gradients for the test molecular systems: (H2O)(64), alanine decamer, hydrated chignolin with the protein data bank (PDB) ID of 1UAO, and a Trp-cage miniprotein construct (PDB ID: 1L2Y). The computation time for calculating the response contribution is comparable to or less than that of the FMO self-consistent charge calculation. It is also shown that the energy gradients for the electrostatic dimer approximation are fully analytic, which significantly reduces the computational costs. The fully analytic FMO gradient is parallelized with an efficiency of about 98% on 32 nodes. (C) 2011 American Institute of Physics. [doi:10.1063/1.3568010]
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Fully analytic energy gradient for the fragment molecular orbital method
    Nagata, Takeshi
    Brorsen, Kurt R.
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [2] Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient
    Brorsen, Kurt R.
    Minezawa, Noriyuki
    Xu, Feng
    Windus, Theresa L.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (12) : 5008 - 5012
  • [3] Fully analytic gradient for the effective fragment molecular orbital method
    Bertoni, Colleen
    Gordon, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [4] Multithreaded parallelization of the energy and analytic gradient in the fragment molecular orbital method
    Mironov, Vladimir
    Alexeev, Yuri
    Fedorov, Dmitri G.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2019, 119 (12)
  • [5] Analytic energy gradient derivation of the fragment molecular orbital method in the adaptive frozen orbital treatment (FMO/AFO)
    Kim, Yu Lim
    Gordon, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [6] Analytic gradient for the embedding potential with approximations in the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2012, 544 : 87 - 93
  • [7] Analytic gradient for the adaptive frozen orbital bond detachment in the fragment molecular orbital method
    Fedorov, Dmitri G.
    Avramov, Pavel V.
    Jensen, Jan H.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2009, 477 (1-3) : 169 - 175
  • [8] Analytic second derivatives of the energy in the fragment molecular orbital method
    Nakata, Hiroya
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Yokojima, Satoshi
    Kitaura, Kazuo
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (16):
  • [9] Analytic gradient for the effective fragment molecular orbital (EFMO) charge transfer energy
    Kim, Shinae
    Xu, Peng
    Bertoni, Colleen
    Gordon, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [10] Unrestricted Hartree-Fock based on the fragment molecular orbital method: Energy and its analytic gradient
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Nagata, Takeshi
    Yokojima, Satoshi
    Ogata, Koji
    Kitaura, Kazuo
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (04): : 044110