Analytic second derivatives of the energy in the fragment molecular orbital method

被引:33
|
作者
Nakata, Hiroya [1 ,2 ]
Nagata, Takeshi [3 ]
Fedorov, Dmitri G. [3 ]
Yokojima, Satoshi [2 ,4 ]
Kitaura, Kazuo [5 ]
Nakamura, Shinichiro [2 ]
机构
[1] Tokyo Inst Technol, Dept Biomol Engn, Midori Ku, Yokohama, Kanagawa 2268501, Japan
[2] RIKEN, Nakamura Lab, Wako, Saitama 3510198, Japan
[3] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[4] Tokyo Univ Pharm & Life Sci, Hachioji, Tokyo 1920392, Japan
[5] Kobe Univ, Grad Sch Syst Informat, Nada Ku, Kobe, Hyogo 6578501, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 16期
关键词
QUANTUM-MECHANICAL CALCULATIONS; DENSITY-FUNCTIONAL THEORY; LARGE SYSTEMS; FMO-MD; CONFIGURATION-INTERACTION; VIBRATIONAL FREQUENCIES; GEOMETRY OPTIMIZATIONS; MOLLER-PLESSET; QM/MM METHODS; HARTREE-FOCK;
D O I
10.1063/1.4800990
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in S(N)2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm(-1) in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Analytic first and second derivatives of the energy in the fragment molecular orbital method combined with molecular mechanics
    Nakata, Hiroya
    Fedorov, Dmitri G.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2020, 120 (24)
  • [2] Analytic Second Derivatives for the Efficient Electrostatic Embedding in the Fragment Molecular Orbital Method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (25) : 2039 - 2050
  • [3] Fully analytic energy gradient in the fragment molecular orbital method
    Nagata, Takeshi
    Brorsen, Kurt
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (12):
  • [4] Fully analytic energy gradient for the fragment molecular orbital method
    Nagata, Takeshi
    Brorsen, Kurt R.
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [5] Multithreaded parallelization of the energy and analytic gradient in the fragment molecular orbital method
    Mironov, Vladimir
    Alexeev, Yuri
    Fedorov, Dmitri G.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2019, 119 (12)
  • [6] Analytic Gradients for the Effective Fragment Molecular Orbital Method
    Bertoni, Colleen
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (10) : 4743 - 4767
  • [7] Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Zahariev, Federico
    Schmidt, Michael W.
    Kitaura, Kazuo
    Gordon, Mark S.
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (12):
  • [8] Analytic second derivative of the energy for density-functional tight-binding combined with the fragment molecular orbital method
    Nakata, Hiroya
    Nishimoto, Yoshio
    Fedorov, Dmitri G.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (04):
  • [9] Fragment Molecular Orbital Molecular Dynamics with the Fully Analytic Energy Gradient
    Brorsen, Kurt R.
    Minezawa, Noriyuki
    Xu, Feng
    Windus, Theresa L.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (12) : 5008 - 5012
  • [10] Analytic energy gradient for second-order Moller-Plesset perturbation theory based on the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Ishimura, Kazuya
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (04):