Analytic second derivatives of the energy in the fragment molecular orbital method

被引:33
|
作者
Nakata, Hiroya [1 ,2 ]
Nagata, Takeshi [3 ]
Fedorov, Dmitri G. [3 ]
Yokojima, Satoshi [2 ,4 ]
Kitaura, Kazuo [5 ]
Nakamura, Shinichiro [2 ]
机构
[1] Tokyo Inst Technol, Dept Biomol Engn, Midori Ku, Yokohama, Kanagawa 2268501, Japan
[2] RIKEN, Nakamura Lab, Wako, Saitama 3510198, Japan
[3] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[4] Tokyo Univ Pharm & Life Sci, Hachioji, Tokyo 1920392, Japan
[5] Kobe Univ, Grad Sch Syst Informat, Nada Ku, Kobe, Hyogo 6578501, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 16期
关键词
QUANTUM-MECHANICAL CALCULATIONS; DENSITY-FUNCTIONAL THEORY; LARGE SYSTEMS; FMO-MD; CONFIGURATION-INTERACTION; VIBRATIONAL FREQUENCIES; GEOMETRY OPTIMIZATIONS; MOLLER-PLESSET; QM/MM METHODS; HARTREE-FOCK;
D O I
10.1063/1.4800990
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in S(N)2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm(-1) in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Analytic second-order energy derivatives in natural orbital functional theory
    Ion Mitxelena
    Mario Piris
    Journal of Mathematical Chemistry, 2018, 56 : 1445 - 1455
  • [22] Effective Fragment Molecular Orbital Method: A Merger of the Effective Fragment Potential and Fragment Molecular Orbital Methods
    Steinmann, Casper
    Fedorov, Dmitri G.
    Jensen, Jan H.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (33): : 8705 - 8712
  • [23] Development of analytic energy gradient method in nuclear orbital plus molecular orbital theory
    Hoshino, Minoru
    Tsukamoto, Yasuhiro
    Nakai, Hiromi
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2007, 107 (14) : 2575 - 2585
  • [24] Free Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Nakamura, Taiji
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (06): : 1596 - 1601
  • [25] Energy Decomposition Analysis in Solution Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (01): : 704 - 719
  • [26] Analytic gradient and molecular dynamics simulations using the fragment molecular orbital method combined with effective potentials
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    THEORETICAL CHEMISTRY ACCOUNTS, 2012, 131 (03)
  • [27] Analytic gradient and molecular dynamics simulations using the fragment molecular orbital method combined with effective potentials
    Takeshi Nagata
    Dmitri G. Fedorov
    Kazuo Kitaura
    Theoretical Chemistry Accounts, 2012, 131
  • [28] Analytic gradient for second order Moller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Li, Hui
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (20):
  • [29] Importance of the hybrid orbital operator derivative term for the energy gradient in the fragment molecular orbital method
    Nagata, Takeshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2010, 492 (4-6) : 302 - 308
  • [30] Definition of molecular orbitals in fragment molecular orbital method
    Inadomi, Y
    Nakano, T
    Kitaura, K
    Nagashima, U
    CHEMICAL PHYSICS LETTERS, 2002, 364 (1-2) : 139 - 143