Analytic second derivatives of the energy in the fragment molecular orbital method

被引:33
|
作者
Nakata, Hiroya [1 ,2 ]
Nagata, Takeshi [3 ]
Fedorov, Dmitri G. [3 ]
Yokojima, Satoshi [2 ,4 ]
Kitaura, Kazuo [5 ]
Nakamura, Shinichiro [2 ]
机构
[1] Tokyo Inst Technol, Dept Biomol Engn, Midori Ku, Yokohama, Kanagawa 2268501, Japan
[2] RIKEN, Nakamura Lab, Wako, Saitama 3510198, Japan
[3] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[4] Tokyo Univ Pharm & Life Sci, Hachioji, Tokyo 1920392, Japan
[5] Kobe Univ, Grad Sch Syst Informat, Nada Ku, Kobe, Hyogo 6578501, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2013年 / 138卷 / 16期
关键词
QUANTUM-MECHANICAL CALCULATIONS; DENSITY-FUNCTIONAL THEORY; LARGE SYSTEMS; FMO-MD; CONFIGURATION-INTERACTION; VIBRATIONAL FREQUENCIES; GEOMETRY OPTIMIZATIONS; MOLLER-PLESSET; QM/MM METHODS; HARTREE-FOCK;
D O I
10.1063/1.4800990
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in S(N)2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm(-1) in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Partial energy gradient based on the fragment molecular orbital method: Application to geometry optimization
    Ishikawa, Takeshi
    Yamamoto, Norifumi
    Kuwata, Kazuo
    CHEMICAL PHYSICS LETTERS, 2010, 500 (1-3) : 149 - 154
  • [42] Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method
    Fedorov, Dmitri G.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (24): : 4956 - 4971
  • [43] Analytical second derivatives of molecular electronic energy integrals obtained by spherical gaussian orbital
    Pakiari, AH
    Oftadeh, M
    THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE, 1998, 430 : 177 - 190
  • [44] Molecular orbital of fragment molecular orbital method with Sakurai-Sugiura method on grid computing environment
    Nagashima, Umpei
    Watanabe, Toshio
    Inadomi, Yuichi
    Umeda, Hiroaki
    Ishimoto, Takayoshi
    Sakurai, Tetsuya
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 21 - 21
  • [45] Evaluation of analytic molecular orbital derivatives and gradients using the effective valence shell Hamiltonian method
    Chaudhuri, RK
    Stevens, JE
    Freed, KF
    JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (22): : 9685 - 9693
  • [46] Fragmentation of disulfide bonds in the fragment molecular orbital method
    Fedorov, Dmitri G.
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2024, 1241
  • [47] The fragment molecular orbital method and understanding monomer polarization
    Churchill, Cassandra D. M.
    CHEMICAL PHYSICS LETTERS, 2012, 554 : 185 - 189
  • [48] Applications of the Fragment Molecular Orbital Method in Drug Discovery
    Ishikawa, Takeshi
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2016, 136 (01): : 121 - 130
  • [49] Fully Integrated Effective Fragment Molecular Orbital Method
    Pruitt, Spencer R.
    Steinmann, Casper
    Jensen, Jan H.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (05) : 2235 - 2249
  • [50] Multilayer formulation of the fragment molecular orbital method (FMO)
    Fedorov, DG
    Ishida, T
    Kitaura, K
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (11): : 2638 - 2646