Hard chaos in magnetic billiards (on the hyperbolic plane)

被引:6
|
作者
Tasnadi, T [1 ]
机构
[1] Eotvos Lorand Univ, Hungarian Acad Sci, Res Grp Stat Phys, Dept Phys Complex Syst, H-1088 Budapest, Hungary
关键词
D O I
10.1063/1.532468
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper some results on the local and global stability analysis of magnetic billiard systems, established on two dimensional Riemannian manifolds of constant curvature are presented, with particular emphasis on the hyperbolic plane. For special billiards, possessing a discrete group of (rotational or translational) symmetry, a geometrical theorem, illustrated by numerical simulations, is given on the stability of trajectories with the same symmetry. We also present sufficient criteria for the global hyperbolicity of the dynamics (hard chaos), and give lower estimations for the Lyapunov exponent in terms of the shape of the billiard. (C) 1998 American Institute of Physics. [S0022-2488(98)02606-1].
引用
收藏
页码:3783 / 3804
页数:22
相关论文
共 50 条
  • [31] EXTENSIONS OF THE SHANNON ENTROPY AND THE CHAOS GAME ALGORITHM TO HYPERBOLIC NUMBERS PLANE
    Tellez-Sanchez, G. Y.
    Bory-Reyes, J.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (01)
  • [32] Extensions of the shannon entropy and the chaos game algorithm to hyperbolic numbers plane
    Téllez-Sánchez, G.Y.
    Bory-Reyes, J.
    Fractals, 2021, 29 (01):
  • [33] Hyperbolic outer billiards: a first example
    Genin, Daniel
    NONLINEARITY, 2006, 19 (06) : 1403 - 1413
  • [34] On the Bernoulli Property of Planar Hyperbolic Billiards
    Del Magno, Gianluigi
    Markarian, Roberto
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 350 (03) : 917 - 955
  • [35] Hyperbolic Billiards on Surfaces of Constant Curvature
    Boris Gutkin
    Uzy Smilansky
    Eugene Gutkin
    Communications in Mathematical Physics, 1999, 208 : 65 - 90
  • [36] Bernoulli Property for Some Hyperbolic Billiards
    Andrade, Rodrigo M. D.
    REGULAR & CHAOTIC DYNAMICS, 2020, 25 (04): : 349 - 382
  • [37] On the Bernoulli Property of Planar Hyperbolic Billiards
    Gianluigi Del Magno
    Roberto Markarian
    Communications in Mathematical Physics, 2017, 350 : 917 - 955
  • [38] Hyperbolic billiards on surfaces of constant curvature
    Gutkin, B
    Smilansky, U
    Gutkin, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 208 (01) : 65 - 90
  • [39] Bernoulli Property for Some Hyperbolic Billiards
    Rodrigo M.D. Andrade
    Regular and Chaotic Dynamics, 2020, 25 : 349 - 382
  • [40] New mechanism of chaos in triangular billiards
    S. V. Naydenov
    D. M. Naplekov
    V. V. Yanovsky
    JETP Letters, 2013, 98 : 496 - 502