EXTENSIONS OF THE SHANNON ENTROPY AND THE CHAOS GAME ALGORITHM TO HYPERBOLIC NUMBERS PLANE

被引:3
|
作者
Tellez-Sanchez, G. Y. [1 ]
Bory-Reyes, J. [2 ]
机构
[1] Inst Politecn Nacl, Escuela Super Fis & Matemat, Edif 9,1er Piso, Mexico City 07338, DF, Mexico
[2] Inst Politecn Nacl, Escuela Super Ingn Mecan & Elect, Edif 5,3er Piso, Mexico City 07338, DF, Mexico
关键词
Hyperbolic Numbers; Chaos Game; Entropy; Probability;
D O I
10.1142/S0218348X21500134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide extensions to hyperbolic numbers plane of the classical Chaos game algorithm and the Shannon entropy. Both notions connected with that of probability with values in hyperbolic number, introduced by Alpay et al. [Kolmogorov's axioms for probabilities with values in hyperbolic numbers, Adv. Appl. Clifford Algebras 27(2) (2017) 913-929]. Within this context, particular attention has been paid to the interpretation of the hyperbolic valued probabilities and the hyperbolic extension of entropy as well.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Extensions of the shannon entropy and the chaos game algorithm to hyperbolic numbers plane
    Téllez-Sánchez, G.Y.
    Bory-Reyes, J.
    Fractals, 2021, 29 (01):
  • [2] Chaos game in an extended hyperbolic plane
    Romakina, L. N.
    Ushakov, I. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 215 (03) : 793 - 804
  • [3] Chaos game in an extended hyperbolic plane
    L. N. Romakina
    I. V. Ushakov
    Theoretical and Mathematical Physics, 2023, 215 : 793 - 804
  • [4] GENERALIZED CHAOS GAME IN AN EXTENDED HYPERBOLIC PLANE
    Romakina, L. N.
    Ushakov, I. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 220 (02) : 1361 - 1384
  • [5] Contrasting stochasticity with chaos in a permutation Lempel-Ziv complexity - Shannon entropy plane
    Mateos, Diego M.
    Zozor, Steeve
    Olivares, Felipe
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 554
  • [7] Shannon information entropy for a hyperbolic double-well potential
    Sun, Guo-Hua
    Dong, Shi-Hai
    Launey, Kristina D.
    Dytrych, Tomas
    Draayer, Jerry P.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (14) : 891 - 899
  • [8] Hard chaos in magnetic billiards (on the hyperbolic plane)
    Tasnadi, T
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (07) : 3783 - 3804
  • [9] Noise versus chaos in a causal Fisher-Shannon plane
    Rosso, Osvaldo A.
    Olivares, Felipe
    Plastino, Angelo
    PAPERS IN PHYSICS, 2015, 7
  • [10] Entropy differences based on Shannon Function on Triangular Fuzzy Numbers
    Wang, Tien-Chin
    Liang, Jia-Ling
    Chu, Hsiao-Lan
    WSEAS Transactions on Mathematics, 2007, 6 (01) : 30 - 37