EXTENSIONS OF THE SHANNON ENTROPY AND THE CHAOS GAME ALGORITHM TO HYPERBOLIC NUMBERS PLANE

被引:3
|
作者
Tellez-Sanchez, G. Y. [1 ]
Bory-Reyes, J. [2 ]
机构
[1] Inst Politecn Nacl, Escuela Super Fis & Matemat, Edif 9,1er Piso, Mexico City 07338, DF, Mexico
[2] Inst Politecn Nacl, Escuela Super Ingn Mecan & Elect, Edif 5,3er Piso, Mexico City 07338, DF, Mexico
关键词
Hyperbolic Numbers; Chaos Game; Entropy; Probability;
D O I
10.1142/S0218348X21500134
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide extensions to hyperbolic numbers plane of the classical Chaos game algorithm and the Shannon entropy. Both notions connected with that of probability with values in hyperbolic number, introduced by Alpay et al. [Kolmogorov's axioms for probabilities with values in hyperbolic numbers, Adv. Appl. Clifford Algebras 27(2) (2017) 913-929]. Within this context, particular attention has been paid to the interpretation of the hyperbolic valued probabilities and the hyperbolic extension of entropy as well.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Chaos Game Optimization: a novel metaheuristic algorithm
    Siamak Talatahari
    Mahdi Azizi
    Artificial Intelligence Review, 2021, 54 : 917 - 1004
  • [22] Measuring inconsistencies on ontology change estimate based on cooperative game and Shannon entropy
    Bousso, Mamadou
    Gaye, Mouhamadou
    Sall, Ousmane
    Thiam, Mouhamadou
    Lo, Moussa
    3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,
  • [23] From Chaos to Ordering: New Studies in the Shannon Entropy of 2D Patterns
    Legchenkova, Irina
    Frenkel, Mark
    Shvalb, Nir
    Shoval, Shraga
    Gendelman, Oleg V.
    Bormashenko, Edward
    ENTROPY, 2022, 24 (06)
  • [24] Non-hyperbolic iterated function systems: semifractals and the chaos game
    Diaz, Lorenzo J.
    Matias, Edgar
    FUNDAMENTA MATHEMATICAE, 2020, 250 (01) : 21 - 39
  • [25] Force based Tool Wear Detection using Shannon Entropy and Phase Plane
    Kollment, Werner
    O'Leary, Paul
    Ritt, Roland
    Kluensner, Thomas
    2017 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2017, : 653 - 658
  • [26] Lyapunov exponents and entanglement entropy transition on the noncommutative hyperbolic plane
    Ganeshan, Sriram
    Polychronakos, Alexios P.
    SCIPOST PHYSICS CORE, 2020, 3 (01):
  • [27] Chaos and randomness: An equivalence proof of a generalized version of the Shannon entropy and the Kolmogorov-Sinai entropy for Hamiltonian dynamical systems
    Frigg, R
    CHAOS SOLITONS & FRACTALS, 2006, 28 (01) : 26 - 31
  • [28] Belief Fisher-Shannon information plane: Properties, extensions, and applications to time series analysis
    Contreras-Reyes, Javier E.
    Kharazmi, Omid
    CHAOS SOLITONS & FRACTALS, 2023, 177
  • [29] An Algorithm of Spectral Minimum Shannon Entropy on Extracting Endmember of Hyperspectral Image
    Yang Ke-ming
    Liu Shi-wen
    Wang Lin-wei
    Yang Jie
    Sun Yang-yang
    He Dan-dan
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34 (08) : 2229 - 2233
  • [30] Shannon and Fisher Entropy for a New Class of Single Hyperbolic Potentials in Fractional Schrödinger Equation
    Santana-Carrillo, R.
    Maya-Franco, D.
    Sun, Guo-Hua
    Dong, Shi-Hai
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2025, 125 (07)