Hard chaos in magnetic billiards (on the hyperbolic plane)

被引:6
|
作者
Tasnadi, T [1 ]
机构
[1] Eotvos Lorand Univ, Hungarian Acad Sci, Res Grp Stat Phys, Dept Phys Complex Syst, H-1088 Budapest, Hungary
关键词
D O I
10.1063/1.532468
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper some results on the local and global stability analysis of magnetic billiard systems, established on two dimensional Riemannian manifolds of constant curvature are presented, with particular emphasis on the hyperbolic plane. For special billiards, possessing a discrete group of (rotational or translational) symmetry, a geometrical theorem, illustrated by numerical simulations, is given on the stability of trajectories with the same symmetry. We also present sufficient criteria for the global hyperbolicity of the dynamics (hard chaos), and give lower estimations for the Lyapunov exponent in terms of the shape of the billiard. (C) 1998 American Institute of Physics. [S0022-2488(98)02606-1].
引用
收藏
页码:3783 / 3804
页数:22
相关论文
共 50 条
  • [41] New mechanism of chaos in triangular billiards
    Naydenov, S. V.
    Naplekov, D. M.
    Yanovsky, V. V.
    JETP LETTERS, 2013, 98 (08) : 496 - 502
  • [42] SPECTRAL PROPERTIES OF BILLIARDS AND QUANTUM CHAOS
    SCHMIT, C
    JOURNAL DE PHYSIQUE, 1984, 45 (NC-6): : 379 - 386
  • [43] PATH INTEGRATION ON THE HYPERBOLIC PLANE WITH A MAGNETIC-FIELD
    GROSCHE, C
    ANNALS OF PHYSICS, 1990, 201 (02) : 258 - 284
  • [44] HYPERBOLIC BILLIARDS ON POLYTOPES WITH CONTRACTING REFLECTION LAWS
    Duarte, Pedro
    Gaivao, Jose Pedro
    Soufi, Mohammad
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3079 - 3109
  • [45] On the rate of quantum ergodicity on hyperbolic surfaces and for billiards
    Aurich, R
    Taglieber, M
    PHYSICA D, 1998, 118 (1-2): : 84 - 102
  • [46] On the rate of quantum ergodicity on hyperbolic surfaces and for billiards
    Aurich, R.
    Taglieber, M.
    Physica D: Nonlinear Phenomena, 1998, 118 (1-2): : 84 - 102
  • [47] Coding Billiards in Hyperbolic 3-Space
    Singh, Pradeep
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2024, 30 (04)
  • [48] Hyperbolic Kac Moody algebras and Einstein billiards
    de Buyl, S
    Schomblond, C
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (12) : 4464 - 4492
  • [49] Singular sets of planar hyperbolic billiards are regular
    Gianluigi Del Magno
    Roberto Markarian
    Regular and Chaotic Dynamics, 2013, 18 : 425 - 452
  • [50] Singular sets of planar hyperbolic billiards are regular
    Del Magno, Gianluigi
    Markarian, Roberto
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (04): : 425 - 452