Hard chaos in magnetic billiards (on the hyperbolic plane)

被引:6
|
作者
Tasnadi, T [1 ]
机构
[1] Eotvos Lorand Univ, Hungarian Acad Sci, Res Grp Stat Phys, Dept Phys Complex Syst, H-1088 Budapest, Hungary
关键词
D O I
10.1063/1.532468
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper some results on the local and global stability analysis of magnetic billiard systems, established on two dimensional Riemannian manifolds of constant curvature are presented, with particular emphasis on the hyperbolic plane. For special billiards, possessing a discrete group of (rotational or translational) symmetry, a geometrical theorem, illustrated by numerical simulations, is given on the stability of trajectories with the same symmetry. We also present sufficient criteria for the global hyperbolicity of the dynamics (hard chaos), and give lower estimations for the Lyapunov exponent in terms of the shape of the billiard. (C) 1998 American Institute of Physics. [S0022-2488(98)02606-1].
引用
收藏
页码:3783 / 3804
页数:22
相关论文
共 50 条
  • [11] Chaos game in an extended hyperbolic plane
    Romakina, L. N.
    Ushakov, I. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2023, 215 (03) : 793 - 804
  • [12] Chaos game in an extended hyperbolic plane
    L. N. Romakina
    I. V. Ushakov
    Theoretical and Mathematical Physics, 2023, 215 : 793 - 804
  • [13] Hyperbolic Magnetic Billiards on Surfaces¶of Constant Curvature
    Boris Gutkin
    Communications in Mathematical Physics, 2001, 217 : 33 - 53
  • [14] GENERALIZED CHAOS GAME IN AN EXTENDED HYPERBOLIC PLANE
    Romakina, L. N.
    Ushakov, I. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 220 (02) : 1361 - 1384
  • [15] Multidimensional hyperbolic billiards
    Szasz, Domokos
    DYNAMICAL SYSTEMS, ERGODIC THEORY, AND PROBABILITY: IN MEMORY OF KOLYA CHERNOV, 2017, 698 : 201 - 220
  • [16] Design of Hyperbolic Billiards
    Maciej P. Wojtkowski
    Communications in Mathematical Physics, 2007, 273 : 283 - 304
  • [17] Design of hyperbolic billiards
    Wojtkowski, Maciej P.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (02) : 283 - 304
  • [18] Photons, billiards and chaos
    Suppes, P
    deBarros, JA
    LAW AND PREDICTION IN THE LIGHT OF CHAOS RESEARCH, 1996, 473 : 189 - 201
  • [19] Chaos in composite billiards
    Baryakhtar, V. G.
    Yanovsky, V. V.
    Naydenov, S. V.
    Kurilo, A. V.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2006, 103 (02) : 292 - 302
  • [20] Quantum chaos in billiards
    Baecker, Arnd
    COMPUTING IN SCIENCE & ENGINEERING, 2007, 9 (03) : 60 - 64