On the Hierarchical Bernoulli Mixture Model Using Bayesian Hamiltonian Monte Carlo

被引:0
|
作者
Suryaningtyas, Wahyuni [1 ,2 ]
Iriawan, Nur [1 ]
Kuswanto, Heri [1 ]
Zain, Ismaini [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya 60111, Indonesia
[2] Univ Muhammadiyah Surabaya, Study Program Math Educ, Fac Teacher Training & Educ, Jl Sutorejo 59, Surabaya 60113, Indonesia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 12期
关键词
Bernoulli mixture model; finite mixture; Hamiltonian Monte Carlo; WAIC; MULTILEVEL MODELS;
D O I
10.3390/sym13122404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The model developed considers the uniqueness of a data-driven binary response (indicated by 0 and 1) identified as having a Bernoulli distribution with finite mixture components. In social science applications, Bernoulli's constructs a hierarchical structure data. This study introduces the Hierarchical Bernoulli mixture model (Hibermimo), a new analytical model that combines the Bernoulli mixture with hierarchical structure data. The proposed approach uses a Hamiltonian Monte Carlo algorithm with a No-U-Turn Sampler (HMC/NUTS). The study has performed a compatible syntax program computation utilizing the HMC/NUTS to analyze the Bayesian Bernoulli mixture aggregate regression model (BBMARM) and Hibermimo. In the model estimation, Hibermimo yielded a result of ~90% compliance with the modeling of each district and a small Widely Applicable Information Criteria (WAIC) value.
引用
收藏
页数:20
相关论文
共 50 条
  • [2] Bayesian protein superposition using Hamiltonian Monte Carlo
    Moreta, Lys Sanz
    Al-Sibahi, Ahmad Salim
    Hamelryck, Thomas
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 1 - 11
  • [3] A Bayesian cure rate regression model using Hamiltonian Monte Carlo methods
    Cancho, Vicente G.
    Sacramento, Michele M.
    Ortega, Edwin M. M.
    de Moraes, Talita E. N. T.
    Cordeiro, Gauss M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [4] Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian Hierarchical Models
    Zhang, Yichuan
    Sutton, Charles
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [5] Clustering sparse binary data with hierarchical Bayesian Bernoulli mixture model
    Ye, Mao
    Zhang, Peng
    Nie, Lizhen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 123 : 32 - 49
  • [6] Modified Hamiltonian Monte Carlo for Bayesian inference
    Radivojevic, Tijana
    Akhmatskaya, Elena
    STATISTICS AND COMPUTING, 2020, 30 (02) : 377 - 404
  • [7] Modified Hamiltonian Monte Carlo for Bayesian inference
    Tijana Radivojević
    Elena Akhmatskaya
    Statistics and Computing, 2020, 30 : 377 - 404
  • [8] Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo
    Kreuzer, Alexander
    Czado, Claudia
    ECONOMETRICS AND STATISTICS, 2021, 19 : 130 - 150
  • [9] Bayesian updating using accelerated Hamiltonian Monte Carlo with gradient-enhanced Kriging model
    Li, Qiang
    Ni, Pinghe
    Du, Xiuli
    Han, Qiang
    Xu, Kun
    Bai, Yulei
    COMPUTERS & STRUCTURES, 2025, 307
  • [10] Bayesian Estimation of Simultaneous Regression Quantiles Using Hamiltonian Monte Carlo
    Hachem, Hassan
    Abboud, Candy
    ALGORITHMS, 2024, 17 (06)