On the Hierarchical Bernoulli Mixture Model Using Bayesian Hamiltonian Monte Carlo

被引:0
|
作者
Suryaningtyas, Wahyuni [1 ,2 ]
Iriawan, Nur [1 ]
Kuswanto, Heri [1 ]
Zain, Ismaini [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya 60111, Indonesia
[2] Univ Muhammadiyah Surabaya, Study Program Math Educ, Fac Teacher Training & Educ, Jl Sutorejo 59, Surabaya 60113, Indonesia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 12期
关键词
Bernoulli mixture model; finite mixture; Hamiltonian Monte Carlo; WAIC; MULTILEVEL MODELS;
D O I
10.3390/sym13122404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The model developed considers the uniqueness of a data-driven binary response (indicated by 0 and 1) identified as having a Bernoulli distribution with finite mixture components. In social science applications, Bernoulli's constructs a hierarchical structure data. This study introduces the Hierarchical Bernoulli mixture model (Hibermimo), a new analytical model that combines the Bernoulli mixture with hierarchical structure data. The proposed approach uses a Hamiltonian Monte Carlo algorithm with a No-U-Turn Sampler (HMC/NUTS). The study has performed a compatible syntax program computation utilizing the HMC/NUTS to analyze the Bayesian Bernoulli mixture aggregate regression model (BBMARM) and Hibermimo. In the model estimation, Hibermimo yielded a result of ~90% compliance with the modeling of each district and a small Widely Applicable Information Criteria (WAIC) value.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo
    Monnahan, Cole C.
    Thorson, James T.
    Branch, Trevor A.
    METHODS IN ECOLOGY AND EVOLUTION, 2017, 8 (03): : 339 - 348
  • [12] Multimodal Bayesian registration of noisy functions using Hamiltonian Monte Carlo
    Tucker, J. Derek
    Shand, Lyndsay
    Chowdhary, Kenny
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 163
  • [13] Importance Sampling-Based Transport Map Hamiltonian Monte Carlo for Bayesian Hierarchical Models
    Osmundsen, Kjartan Kloster
    Kleppe, Tore Selland
    Liesenfeld, Roman
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (04) : 906 - 919
  • [14] Monte Carlo Bayesian Hierarchical Reinforcement Learning
    Ngo Anh Vien
    Hung Ngo
    Ertel, Wolfgang
    AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, 2014, : 1551 - 1552
  • [15] Bayesian parameter inference in hydrological modelling using a Hamiltonian Monte Carlo approach with a stochastic rain model
    Ulzega, Simone
    Albert, Carlo
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2023, 27 (15) : 2935 - 2950
  • [16] Using Bayesian Hamiltonian Monte Carlo and a nonlinear model for the estimation of genetic parameters for lactation curves in goats
    Araujo, Andre C.
    Gloria, Leonardo
    Abreu, Paulo
    Silva, Fabyano
    Rodrigues, Marcelo
    Brito, Luiz F.
    JOURNAL OF ANIMAL SCIENCE, 2021, 99 : 305 - 306
  • [17] A generalized many-facet Rasch model and its Bayesian estimation using Hamiltonian Monte Carlo
    Uto M.
    Ueno M.
    Behaviormetrika, 2020, 47 (2) : 469 - 496
  • [18] A Bayesian approach to calibrate system dynamics models using Hamiltonian Monte Carlo
    Andrade, Jair
    Duggan, Jim
    SYSTEM DYNAMICS REVIEW, 2021, 37 (04) : 283 - 309
  • [19] Bayesian Elastic Full-Waveform Inversion Using Hamiltonian Monte Carlo
    Gebraad, Lars
    Boehm, Christian
    Fichtner, Andreas
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (03)
  • [20] A Bayesian multivariate model using Hamiltonian Monte Carlo inference to estimate total organic carbon content in shale
    Ganguli, Shib Sankar
    Kadri, Mohamed Mehdi
    Debnath, Akash
    Sen, Souvik
    GEOPHYSICS, 2022, 87 (05) : M163 - M177