On the Hierarchical Bernoulli Mixture Model Using Bayesian Hamiltonian Monte Carlo

被引:0
|
作者
Suryaningtyas, Wahyuni [1 ,2 ]
Iriawan, Nur [1 ]
Kuswanto, Heri [1 ]
Zain, Ismaini [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya 60111, Indonesia
[2] Univ Muhammadiyah Surabaya, Study Program Math Educ, Fac Teacher Training & Educ, Jl Sutorejo 59, Surabaya 60113, Indonesia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 12期
关键词
Bernoulli mixture model; finite mixture; Hamiltonian Monte Carlo; WAIC; MULTILEVEL MODELS;
D O I
10.3390/sym13122404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The model developed considers the uniqueness of a data-driven binary response (indicated by 0 and 1) identified as having a Bernoulli distribution with finite mixture components. In social science applications, Bernoulli's constructs a hierarchical structure data. This study introduces the Hierarchical Bernoulli mixture model (Hibermimo), a new analytical model that combines the Bernoulli mixture with hierarchical structure data. The proposed approach uses a Hamiltonian Monte Carlo algorithm with a No-U-Turn Sampler (HMC/NUTS). The study has performed a compatible syntax program computation utilizing the HMC/NUTS to analyze the Bayesian Bernoulli mixture aggregate regression model (BBMARM) and Hibermimo. In the model estimation, Hibermimo yielded a result of ~90% compliance with the modeling of each district and a small Widely Applicable Information Criteria (WAIC) value.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference
    Younhee Ko
    Jaebum Kim
    Sandra L. Rodriguez-Zas
    Genes & Genomics, 2019, 41 : 547 - 555
  • [32] Markov chain Monte Carlo simulation of a Bayesian mixture model for gene network inference
    Ko, Younhee
    Kim, Jaebum
    Rodriguez-Zas, Sandra L.
    GENES & GENOMICS, 2019, 41 (05) : 547 - 555
  • [33] Bayesian Inference for Mixed Gaussian GARCH-Type Model by Hamiltonian Monte Carlo Algorithm
    Rubing Liang
    Binbin Qin
    Qiang Xia
    Computational Economics, 2024, 63 : 193 - 220
  • [34] Bayesian Inference for Mixed Gaussian GARCH-Type Model by Hamiltonian Monte Carlo Algorithm
    Liang, Rubing
    Qin, Binbin
    Xia, Qiang
    COMPUTATIONAL ECONOMICS, 2024, 63 (01) : 193 - 220
  • [35] On Using Hamiltonian Monte Carlo Sampling for RL
    Madhushani, Udari
    Dey, Biswadip
    Leonard, Naomi Ehrich
    Chakraborty, Amit
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 6640 - 6645
  • [36] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    PHYSICS LETTERS A, 1999, 258 (01) : 6 - 14
  • [37] Monte Carlo Hamiltonian
    Jirari, H.
    Kröger, H.
    Luo, X.Q.
    Moriarty, K.J.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (01): : 6 - 14
  • [38] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Huang, CQ
    Jiang, JQ
    Luo, XQ
    Moriarty, KJM
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 953 - 955
  • [39] Bayesian analysis of spectral mixture data using Markov chain Monte Carlo methods
    Moussaoui, S
    Carteret, C
    Brie, D
    Mohammad-Djafari, A
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2006, 81 (02) : 137 - 148
  • [40] Bayesian parameter estimation in chiral effective field theory using the Hamiltonian Monte Carlo method
    Svensson, Isak
    Ekstrom, Andreas
    Forssen, Christian
    PHYSICAL REVIEW C, 2022, 105 (01)