On the Hierarchical Bernoulli Mixture Model Using Bayesian Hamiltonian Monte Carlo

被引:0
|
作者
Suryaningtyas, Wahyuni [1 ,2 ]
Iriawan, Nur [1 ]
Kuswanto, Heri [1 ]
Zain, Ismaini [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Stat, Surabaya 60111, Indonesia
[2] Univ Muhammadiyah Surabaya, Study Program Math Educ, Fac Teacher Training & Educ, Jl Sutorejo 59, Surabaya 60113, Indonesia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 12期
关键词
Bernoulli mixture model; finite mixture; Hamiltonian Monte Carlo; WAIC; MULTILEVEL MODELS;
D O I
10.3390/sym13122404
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The model developed considers the uniqueness of a data-driven binary response (indicated by 0 and 1) identified as having a Bernoulli distribution with finite mixture components. In social science applications, Bernoulli's constructs a hierarchical structure data. This study introduces the Hierarchical Bernoulli mixture model (Hibermimo), a new analytical model that combines the Bernoulli mixture with hierarchical structure data. The proposed approach uses a Hamiltonian Monte Carlo algorithm with a No-U-Turn Sampler (HMC/NUTS). The study has performed a compatible syntax program computation utilizing the HMC/NUTS to analyze the Bayesian Bernoulli mixture aggregate regression model (BBMARM) and Hibermimo. In the model estimation, Hibermimo yielded a result of ~90% compliance with the modeling of each district and a small Widely Applicable Information Criteria (WAIC) value.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Bayesian Federated Learning with Hamiltonian Monte Carlo: Algorithm and Theory
    Liang, Jiajun
    Zhang, Qian
    Deng, Wei
    Song, Qifan
    Lin, Guang
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [22] Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation
    Chaudhuri, Sanjay
    Mondal, Debashis
    Yin, Teng
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (01) : 293 - 320
  • [23] Folded Hamiltonian Monte Carlo for Bayesian Generative Adversarial Networks
    Pourshahrokhi, Narges
    Li, Yunpeng
    Kouchaki, Samaneh
    Barnaghi, Payam
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [24] Bayesian time-lapse full waveform inversion using Hamiltonian Monte Carlo
    de Lima, P. D. S.
    Ferreira, M. S.
    Corso, G.
    de Araujo, J. M.
    GEOPHYSICAL PROSPECTING, 2024, 72 (09) : 3381 - 3398
  • [25] Bayesian Modeling of Flood Frequency Analysis in Bangladesh Using Hamiltonian Monte Carlo Techniques
    Alam, Md Ashraful
    Farnham, Craig
    Emura, Kazuo
    WATER, 2018, 10 (07)
  • [26] Bayesian inference for binary neutron star inspirals using a Hamiltonian Monte Carlo algorithm
    Bouffanais, Yann
    Porter, Edward K.
    PHYSICAL REVIEW D, 2019, 100 (10)
  • [27] Hamiltonian Monte Carlo and Borrowing Strength in Hierarchical Inverse Problems
    Nagel, Joseph B.
    Sudret, Bruno
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2016, 2 (03):
  • [28] Monte Carlo Hierarchical Model Learning
    Menashe, Jacob
    Stone, Peter
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS (AAMAS'15), 2015, : 1985 - 1986
  • [29] Monte Carlo Hierarchical Model Learning
    Menashe, Jacob
    Stone, Peter
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS (AAMAS'15), 2015, : 771 - 779
  • [30] Finite element model updating using Hamiltonian Monte Carlo techniques
    Boulkaibet, I.
    Mthembu, L.
    Marwala, T.
    Friswell, M. I.
    Adhikari, S.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (07) : 1042 - 1070