Bayesian Estimation of Simultaneous Regression Quantiles Using Hamiltonian Monte Carlo

被引:0
|
作者
Hachem, Hassan [1 ]
Abboud, Candy [2 ]
机构
[1] AgroParisTech, INRAE, UR1204, 147 Rue Univ, F-75338 Paris, France
[2] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
关键词
simultaneous quantile regression; Bayesian approach; Hamiltonian Monte Carlo; estimation; asymmetric Laplace distribution;
D O I
10.3390/a17060224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The simultaneous estimation of multiple quantiles is a crucial statistical task that enables a thorough understanding of data distribution for robust analysis and decision-making. In this study, we adopt a Bayesian approach to tackle this critical task, employing the asymmetric Laplace distribution (ALD) as a flexible framework for quantile modeling. Our methodology implementation involves the Hamiltonian Monte Carlo (HMC) algorithm, building on the foundation laid in prior work, where the error term is assumed to follow an ALD. Capitalizing on the interplay between two distinct quantiles of this distribution, we endorse a straightforward and fully Bayesian method that adheres to the non-crossing property of quantiles. Illustrated through simulated scenarios, we showcase the effectiveness of our approach in quantile estimation, enhancing precision via the HMC algorithm. The proposed method proves versatile, finding application in finance, environmental science, healthcare, and manufacturing, and contributing to sustainable development goals by fostering innovation and enhancing decision-making in diverse fields.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo
    Monnahan, Cole C.
    Thorson, James T.
    Branch, Trevor A.
    METHODS IN ECOLOGY AND EVOLUTION, 2017, 8 (03): : 339 - 348
  • [2] A Bayesian cure rate regression model using Hamiltonian Monte Carlo methods
    Cancho, Vicente G.
    Sacramento, Michele M.
    Ortega, Edwin M. M.
    de Moraes, Talita E. N. T.
    Cordeiro, Gauss M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [3] Bayesian protein superposition using Hamiltonian Monte Carlo
    Moreta, Lys Sanz
    Al-Sibahi, Ahmad Salim
    Hamelryck, Thomas
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 1 - 11
  • [4] Markov chain Monte Carlo estimation of quantiles
    Doss, Charles R.
    Flegal, James M.
    Jones, Galin L.
    Neath, Ronald C.
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2448 - 2478
  • [5] Bayesian parameter estimation in chiral effective field theory using the Hamiltonian Monte Carlo method
    Svensson, Isak
    Ekstrom, Andreas
    Forssen, Christian
    PHYSICAL REVIEW C, 2022, 105 (01)
  • [6] Fully Bayesian Estimation of Simultaneous Regression Quantiles under Asymmetric Laplace Distribution Specification
    Bleik, Josephine Merhi
    JOURNAL OF PROBABILITY AND STATISTICS, 2019, 2019
  • [7] Modified Hamiltonian Monte Carlo for Bayesian inference
    Radivojevic, Tijana
    Akhmatskaya, Elena
    STATISTICS AND COMPUTING, 2020, 30 (02) : 377 - 404
  • [8] Modified Hamiltonian Monte Carlo for Bayesian inference
    Tijana Radivojević
    Elena Akhmatskaya
    Statistics and Computing, 2020, 30 : 377 - 404
  • [9] Simultaneous Estimation of Multiple Conditional Regression Quantiles
    Yan-ke Wu
    Ya-nan Hu
    Jian Zhou
    Mao-zai Tian
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 448 - 457
  • [10] Simultaneous Estimation of Multiple Conditional Regression Quantiles
    Wu, Yan-ke
    Hu, Ya-nan
    Zhou, Jian
    Tian, Mao-zai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 448 - 457