Bayesian Estimation of Simultaneous Regression Quantiles Using Hamiltonian Monte Carlo

被引:0
|
作者
Hachem, Hassan [1 ]
Abboud, Candy [2 ]
机构
[1] AgroParisTech, INRAE, UR1204, 147 Rue Univ, F-75338 Paris, France
[2] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
关键词
simultaneous quantile regression; Bayesian approach; Hamiltonian Monte Carlo; estimation; asymmetric Laplace distribution;
D O I
10.3390/a17060224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The simultaneous estimation of multiple quantiles is a crucial statistical task that enables a thorough understanding of data distribution for robust analysis and decision-making. In this study, we adopt a Bayesian approach to tackle this critical task, employing the asymmetric Laplace distribution (ALD) as a flexible framework for quantile modeling. Our methodology implementation involves the Hamiltonian Monte Carlo (HMC) algorithm, building on the foundation laid in prior work, where the error term is assumed to follow an ALD. Capitalizing on the interplay between two distinct quantiles of this distribution, we endorse a straightforward and fully Bayesian method that adheres to the non-crossing property of quantiles. Illustrated through simulated scenarios, we showcase the effectiveness of our approach in quantile estimation, enhancing precision via the HMC algorithm. The proposed method proves versatile, finding application in finance, environmental science, healthcare, and manufacturing, and contributing to sustainable development goals by fostering innovation and enhancing decision-making in diverse fields.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Bayesian Modeling of Flood Frequency Analysis in Bangladesh Using Hamiltonian Monte Carlo Techniques
    Alam, Md Ashraful
    Farnham, Craig
    Emura, Kazuo
    WATER, 2018, 10 (07)
  • [32] Bayesian inference for binary neutron star inspirals using a Hamiltonian Monte Carlo algorithm
    Bouffanais, Yann
    Porter, Edward K.
    PHYSICAL REVIEW D, 2019, 100 (10)
  • [33] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [34] Improving predictive uncertainty estimation using Dropout-Hamiltonian Monte Carlo
    Hernandez, Sergio
    Vergara, Diego
    Valdenegro-Toro, Matias
    Jorquera, Felipe
    SOFT COMPUTING, 2020, 24 (06) : 4307 - 4322
  • [35] On Using Hamiltonian Monte Carlo Sampling for RL
    Madhushani, Udari
    Dey, Biswadip
    Leonard, Naomi Ehrich
    Chakraborty, Amit
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 6640 - 6645
  • [36] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Luo, XQ
    Moriarty, KJM
    PHYSICS LETTERS A, 1999, 258 (01) : 6 - 14
  • [37] Monte Carlo Hamiltonian
    Jirari, H.
    Kröger, H.
    Luo, X.Q.
    Moriarty, K.J.M.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 258 (01): : 6 - 14
  • [38] Monte Carlo Hamiltonian
    Jirari, H
    Kröger, H
    Huang, CQ
    Jiang, JQ
    Luo, XQ
    Moriarty, KJM
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 953 - 955
  • [39] Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo
    Kreuzer, Alexander
    Czado, Claudia
    ECONOMETRICS AND STATISTICS, 2021, 19 : 130 - 150
  • [40] Bayesian updating using accelerated Hamiltonian Monte Carlo with gradient-enhanced Kriging model
    Li, Qiang
    Ni, Pinghe
    Du, Xiuli
    Han, Qiang
    Xu, Kun
    Bai, Yulei
    COMPUTERS & STRUCTURES, 2025, 307