Bayesian Estimation of Simultaneous Regression Quantiles Using Hamiltonian Monte Carlo

被引:0
|
作者
Hachem, Hassan [1 ]
Abboud, Candy [2 ]
机构
[1] AgroParisTech, INRAE, UR1204, 147 Rue Univ, F-75338 Paris, France
[2] Amer Univ Middle East, Coll Engn & Technol, Egaila 54200, Kuwait
关键词
simultaneous quantile regression; Bayesian approach; Hamiltonian Monte Carlo; estimation; asymmetric Laplace distribution;
D O I
10.3390/a17060224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The simultaneous estimation of multiple quantiles is a crucial statistical task that enables a thorough understanding of data distribution for robust analysis and decision-making. In this study, we adopt a Bayesian approach to tackle this critical task, employing the asymmetric Laplace distribution (ALD) as a flexible framework for quantile modeling. Our methodology implementation involves the Hamiltonian Monte Carlo (HMC) algorithm, building on the foundation laid in prior work, where the error term is assumed to follow an ALD. Capitalizing on the interplay between two distinct quantiles of this distribution, we endorse a straightforward and fully Bayesian method that adheres to the non-crossing property of quantiles. Illustrated through simulated scenarios, we showcase the effectiveness of our approach in quantile estimation, enhancing precision via the HMC algorithm. The proposed method proves versatile, finding application in finance, environmental science, healthcare, and manufacturing, and contributing to sustainable development goals by fostering innovation and enhancing decision-making in diverse fields.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Bayesian Elastic Full-Waveform Inversion Using Hamiltonian Monte Carlo
    Gebraad, Lars
    Boehm, Christian
    Fichtner, Andreas
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (03)
  • [22] Improving predictive uncertainty estimation using Dropout–Hamiltonian Monte Carlo
    Sergio Hernández
    Diego Vergara
    Matías Valdenegro-Toro
    Felipe Jorquera
    Soft Computing, 2020, 24 : 4307 - 4322
  • [23] Fully Bayesian estimation of virtual brain parameters with self-tuning Hamiltonian Monte Carlo
    Jha, Jayant
    Hashemi, Meysam
    Vattikonda, Anirudh Nihalani
    Wang, Huifang
    Jirsa, Viktor
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2022, 3 (03):
  • [24] Nonparametric Estimation using Regression Quantiles in a Regression Model
    Han, Sang Moon
    Jung, Byoung Cheol
    KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (05) : 793 - 802
  • [25] Reducing Monte Carlo error in the Bayesian estimation of risk ratios using log-binomial regression models
    Salmeron, Diego
    Cano, Juan A.
    Chirlaque, Maria D.
    STATISTICS IN MEDICINE, 2015, 34 (19) : 2755 - 2767
  • [27] Bayesian Federated Learning with Hamiltonian Monte Carlo: Algorithm and Theory
    Liang, Jiajun
    Zhang, Qian
    Deng, Wei
    Song, Qifan
    Lin, Guang
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024,
  • [28] Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation
    Chaudhuri, Sanjay
    Mondal, Debashis
    Yin, Teng
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (01) : 293 - 320
  • [29] Folded Hamiltonian Monte Carlo for Bayesian Generative Adversarial Networks
    Pourshahrokhi, Narges
    Li, Yunpeng
    Kouchaki, Samaneh
    Barnaghi, Payam
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222, 2023, 222
  • [30] Bayesian time-lapse full waveform inversion using Hamiltonian Monte Carlo
    de Lima, P. D. S.
    Ferreira, M. S.
    Corso, G.
    de Araujo, J. M.
    GEOPHYSICAL PROSPECTING, 2024, 72 (09) : 3381 - 3398