Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries

被引:46
|
作者
DeL Pino, M
Felmer, P
Musso, M
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[3] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
D O I
10.1112/S0024609303001942
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to show the existence of solutions with an arbitrarily large number of bubbles for the slightly super-critical elliptic problem -Deltau = u((N+2)/(N-2)+epsilon) in Omega, subject to the conditions that u > 0 in Omega, and u = 0 on partial derivativeOmega, where epsilon > 0 is a small parameter and Omega subset of R(N) is a bounded domain with certain symmetries, for instance an annulus or a torus in R(3).
引用
收藏
页码:513 / 521
页数:9
相关论文
共 50 条
  • [21] Two-bubble solutions in the super-critical Bahri-Coron's problem
    Manuel del Pino
    Patricio Felmer
    Monica Musso
    Calculus of Variations and Partial Differential Equations, 2003, 16 : 113 - 145
  • [22] On the continuity of solutions to advection-diffusion equations with slightly super-critical divergence-free drifts
    Ignatova, Mihaela
    ADVANCES IN NONLINEAR ANALYSIS, 2014, 3 (02) : 81 - 86
  • [23] MULTIPLE SOLUTIONS FOR A SINGULAR SEMILINEAR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT AND SYMMETRIES
    Cano, Alfredo
    Hernandez-Linares, Sergio
    Hernandez-Martinez, Eric
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [24] SOLUTIONS FOR POLYHARMONIC ELLIPTIC PROBLEMS WITH CRITICAL NONLINEARITIES IN SYMMETRIC DOMAINS
    Dou, Jingbo
    Guo, Qianqiao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) : 453 - 464
  • [25] Positive solutions to multi-critical elliptic problems
    Liu, Fanqin
    Yang, Jianfu
    Yu, Xiaohui
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (02) : 851 - 875
  • [26] Positive solutions to multi-critical elliptic problems
    Fanqin Liu
    Jianfu Yang
    Xiaohui Yu
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 851 - 875
  • [27] Self-similar solutions to super-critical gKdV
    Koch, Herbert
    NONLINEARITY, 2015, 28 (03) : 545 - 575
  • [28] Multi-piece of bubble solutions for a nonlinear critical elliptic equation
    Du, Fan
    Hua, Qiaoqiao
    Wang, Chunhua
    Wang, Qingfang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 393 : 102 - 138
  • [29] Positive solutions of slightly supercritical elliptic equations in symmetric domains
    Molle, R
    Passaseo, D
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (05): : 639 - 656
  • [30] MULTI-BUBBLE SOLUTIONS FOR EQUATIONS OF CAFFARELLI-KOHN-NIRENBERG TYPE
    Lin, Lishan
    Liu, Zhaoli
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (06) : 945 - 968