On the continuity of solutions to advection-diffusion equations with slightly super-critical divergence-free drifts

被引:9
|
作者
Ignatova, Mihaela [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Harnack inequality; regularity; drift-diffusion equations; FLOW;
D O I
10.1515/anona-2013-0031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the regularity of solutions to elliptic and parabolic equations of the form -Delta u + b . del u = 0 and u(t) - Delta u + b . del u = 0 with divergence-free drifts b. We are particularly interested in the case when the drift velocity b is assumed to be at the supercritical regularity level with respect to the natural scaling of the equations. Using Harnack-type inequalities obtained in our previous works [7] and [8], we prove the uniform continuity of solutions when the drift lies in a slightly supercritical logarithmic Morrey spaces.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 50 条
  • [1] On the Loss of Continuity for Super-Critical Drift-Diffusion Equations
    Luis Silvestre
    Vlad Vicol
    Andrej Zlatoš
    Archive for Rational Mechanics and Analysis, 2013, 207 : 845 - 877
  • [2] On some properties of weak solutions to elliptic equations with divergence-free drifts
    Filonov, Nikolay
    Shilkin, Timofey
    MATHEMATICAL ANALYSIS IN FLUID MECHANICS: SELECTED RECENT RESULTS, 2018, 710 : 105 - 120
  • [3] On the Loss of Continuity for Super-Critical Drift-Diffusion Equations
    Silvestre, Luis
    Vicol, Vlad
    Zlatos, Andrej
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 207 (03) : 845 - 877
  • [4] Positive solutions for slightly super-critical elliptic equations in contractible domains
    Molle, R
    Passaseo, D
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (05) : 459 - 462
  • [5] Lie group solutions of advection-diffusion equations
    Sun, Yubiao
    Jayaraman, Amitesh
    Chirikjian, Gregory S.
    PHYSICS OF FLUIDS, 2021, 33 (04)
  • [6] Traveling wave solutions of advection-diffusion equations with nonlinear diffusion
    Monsaingeon, L.
    Novikov, A.
    Roquejoffre, J. -M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (04): : 705 - 735
  • [7] Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients
    Zoppou, C
    Knight, JH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (02): : 144 - 148
  • [8] Lorentz Estimates for Weak Solutions of Quasi-linear Parabolic Equations with Singular Divergence-free Drifts
    Tuoc Phan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (04): : 937 - 982
  • [9] THE HARNACK INEQUALITY FOR SECOND-ORDER ELLIPTIC EQUATIONS WITH DIVERGENCE-FREE DRIFTS
    Ignatova, Mihaela
    Kukavica, Igor
    Ryzhik, Lenya
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (04) : 681 - 694
  • [10] Divergence-Free Solutions of Poisson-Like Equations
    Niko Sauer
    Journal of Mathematical Fluid Mechanics, 2005, 7 : 405 - 412