On the continuity of solutions to advection-diffusion equations with slightly super-critical divergence-free drifts

被引:9
|
作者
Ignatova, Mihaela [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Harnack inequality; regularity; drift-diffusion equations; FLOW;
D O I
10.1515/anona-2013-0031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the regularity of solutions to elliptic and parabolic equations of the form -Delta u + b . del u = 0 and u(t) - Delta u + b . del u = 0 with divergence-free drifts b. We are particularly interested in the case when the drift velocity b is assumed to be at the supercritical regularity level with respect to the natural scaling of the equations. Using Harnack-type inequalities obtained in our previous works [7] and [8], we prove the uniform continuity of solutions when the drift lies in a slightly supercritical logarithmic Morrey spaces.
引用
收藏
页码:81 / 86
页数:6
相关论文
共 50 条
  • [21] Holder estimates for fractional parabolic equations with critical divergence free drifts
    Delgadino, Matias G.
    Smith, Scott
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (03): : 577 - 604
  • [22] Discontinuous Galerkin methods for equations with divergence-free solutions: preliminary results
    Cockburn, B
    Li, FY
    Shu, CW
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1900 - 1902
  • [23] Solutions of fuzzy advection-diffusion and heat equations by natural adomian decomposition method
    Noor Jamal
    Muhammad Sarwar
    Parveen Agarwal
    Nabil Mlaiki
    Ahmad Aloqaily
    Scientific Reports, 13
  • [24] Analytical solutions of the space-time fractional Telegraph and advection-diffusion equations
    Tawfik, Ashraf M.
    Fichtner, Horst
    Schlickeiser, Reinhard
    Elhanbaly, A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 491 : 810 - 819
  • [25] Global existence results for solutions of general conservative advection-diffusion equations in R
    Guidolin, P. L.
    Schutz, L.
    Ziebell, J. S.
    Zingano, J. P.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 515 (01)
  • [26] Uniform error estimates for triangular finite element solutions of advection-diffusion equations
    Chen, Hongtao
    Lin, Qun
    Zhou, Junming
    Wang, Hong
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2013, 38 (01) : 83 - 100
  • [27] Uniform error estimates for triangular finite element solutions of advection-diffusion equations
    Hongtao Chen
    Qun Lin
    Junming Zhou
    Hong Wang
    Advances in Computational Mathematics, 2013, 38 : 83 - 100
  • [28] Solutions of fuzzy advection-diffusion and heat equations by natural adomian decomposition method
    Jamal, Noor
    Sarwar, Muhammad
    Agarwal, Parveen
    Mlaiki, Nabil
    Aloqaily, Ahmad
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [29] A note on discontinuous galerkin divergence-free solutions of the navier-stokes equations
    Cockburn, Bernardo
    Kanschat, Guido
    Schotzau, Dominik
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 31 (1-2) : 61 - 73
  • [30] Numerical solutions of space-fractional advection-diffusion equations with nonlinear source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    APPLIED NUMERICAL MATHEMATICS, 2020, 155 : 93 - 102