Positive solutions to multi-critical elliptic problems

被引:5
|
作者
Liu, Fanqin [1 ]
Yang, Jianfu [1 ]
Yu, Xiaohui [2 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guangdong, Peoples R China
关键词
Multi-critical problem; Multiple solutions; Elliptic equation; CRITICAL EXPONENTS; MULTIPLICITY; EQUATION; EXISTENCE; TOPOLOGY; PDE;
D O I
10.1007/s10231-022-01262-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of multiple positive solutions to the following multi-critical elliptic problem {-Delta u = lambda vertical bar u vertical bar(p-2)u + Sigma(k)(i=1)(vertical bar x vertical bar(-(N-alpha i)) * vertical bar u vertical bar 2i*)vertical bar u vertical bar(2i)*(-2)u in Omega, u is an element of H-0(1)(Omega) in connection with the topology of the bounded domain Omega subset of R-N, N >= 4, where lambda > 0, 2(i)* = N+alpha(i)/N-2 with N - 4 < alpha(i) < N, i = 1, 2, . . . , k are critical Hardy-Littlewood-Sobolev exponents and 2 < p < 2* = 2N/N-2. We show that there is lambda* > 0 such that if 0 < lambda < lambda* problem (0.1) possesses at least cat(Omega) (Omega) positive solutions. We also study the existence and uniqueness of positive solutions for the limit problem of (0.1).
引用
收藏
页码:851 / 875
页数:25
相关论文
共 50 条