Multi-bubble solutions for slightly super-critical elliptic problems in domains with symmetries

被引:46
|
作者
DeL Pino, M
Felmer, P
Musso, M
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
[3] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
D O I
10.1112/S0024609303001942
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to show the existence of solutions with an arbitrarily large number of bubbles for the slightly super-critical elliptic problem -Deltau = u((N+2)/(N-2)+epsilon) in Omega, subject to the conditions that u > 0 in Omega, and u = 0 on partial derivativeOmega, where epsilon > 0 is a small parameter and Omega subset of R(N) is a bounded domain with certain symmetries, for instance an annulus or a torus in R(3).
引用
收藏
页码:513 / 521
页数:9
相关论文
共 50 条
  • [31] Morse index and critical/super-critical Dirichlet problems with a large parameter
    Petralla, Maristella
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 76 : 14 - 40
  • [32] Positive solutions for critical inhomogeneous elliptic problems in non-contractible domains
    He, Haiyang
    Yang, Jianfu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (02) : 952 - 973
  • [33] MULTI-BUBBLE BOURGAIN-WANG SOLUTIONS TO NONLINEAR SCHRODINGER EQUATIONS
    Roeckner, Michael
    Su, Yiming
    Zhang, Deng
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (01) : 517 - 588
  • [34] SUPER-CRITICAL PROBLEMS INVOLVING THE FRACTIONAL P-LAPLACIAN
    Wu, Zijian
    Chen, Haibo
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 2065 - 2073
  • [35] Nonexistence of interior bubbling solutions for slightly supercritical elliptic problems
    Mohamed Ben Ayed
    Khalil El Mehdi
    Boundary Value Problems, 2023
  • [36] A Priori Bounds and Existence of Solutions for Slightly Superlinear Elliptic Problems
    Garcia-Melian, J.
    Iturriaga, L.
    Ramos Quoirin, H.
    ADVANCED NONLINEAR STUDIES, 2015, 15 (04) : 923 - 938
  • [37] Nonexistence of interior bubbling solutions for slightly supercritical elliptic problems
    Ben Ayed, Mohamed
    El Mehdi, Khalil
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [38] Nodal Blow-Up Solutions to Slightly Subcritical Elliptic Problems with Hardy-Critical Term
    Bartsch, Thomas
    Guo, Qianqiao
    ADVANCED NONLINEAR STUDIES, 2017, 17 (01) : 55 - 85
  • [39] On Uniqueness of Multi-bubble Blow-Up Solutions and Multi-solitons to L2-Critical Nonlinear Schrodinger Equations
    Cao, Daomin
    Su, Yiming
    Zhang, Deng
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (01)
  • [40] Construction of multi-bubble blow-up solutions to the L2-critical half-wave equation
    Cao, Daomin
    Su, Yiming
    Zhang, Deng
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (03):