OPTIMAL CHEMOTHERAPY FOR BRAIN TUMOR GROWTH IN A REACTION-DIFFUSION MODEL

被引:6
|
作者
Yousefnezhad, Mohsen [1 ]
Kao, Chiu-Yen [2 ]
Mohammadi, Seyyed Abbas [3 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz, Iran
[2] Claremont McKenna Coll, Dept Math Sci, Claremont, CA 91711 USA
[3] Univ Yasuj, Coll Sci, Dept Math, Yasuj 7591874934, Iran
关键词
reaction-diffusion equation; brain tumor; optimal chemotherapy strategy; MATHEMATICAL-MODEL; GLIOMA GROWTH; CANCER-CHEMOTHERAPY; ROBUST-CONTROL; GLIOBLASTOMA; RADIOTHERAPY; EFFICACY; DYNAMICS; MTD;
D O I
10.1137/20M135995X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we address the question of determining optimal chemotherapy strategies to prevent the growth of brain tumor population. To do so, we consider a reaction-diffusion model which describes the diffusion and proliferation of tumor cells and a minimization problem corresponding to it. We shall establish that the optimization problem admits a solution and obtain a necessary condition for the minimizer. In a specific case, the optimizer is calculated explicitly, and we prove that it is unique. Then, a gradient-based efficient numerical algorithm is developed in order to determine the optimizer. Our results suggest a bang-bang chemotherapy strategy in a cycle which starts at the maximum dose and terminates with a rest period. Numerical simulations based upon our algorithm on a real brain image show that this is in line with the maximum tolerated dose (MTD), a standard chemotherapy protocol.
引用
收藏
页码:1077 / 1097
页数:21
相关论文
共 50 条
  • [41] An Optimal Treatment Strategy for a Leukemia Immune Model Governed by Reaction-Diffusion Equations
    Xiang, Huili
    Zhou, Min
    Liu, Xuanfeng
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (04) : 1219 - 1239
  • [42] Optimal control of a reaction-diffusion model related to the spread of COVID-19
    Colli, Pierluigi
    Gilardi, Gianni
    Marinoschi, Gabriela
    Rocca, Elisabetta
    ANALYSIS AND APPLICATIONS, 2023, : 111 - 136
  • [43] DYNAMIC ANALYSIS AND OPTIMAL CONTROL OF A TOXICANT-POPULATION MODEL WITH REACTION-DIFFUSION
    Ma, An
    Hu, Jing
    Zhang, Qimin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 579 - 605
  • [44] Spatiotemporal dynamics of a reaction-diffusion model of pollen tube tip growth
    Chenwei Tian
    Qingyan Shi
    Xinping Cui
    Jingzhe Guo
    Zhenbiao Yang
    Junping Shi
    Journal of Mathematical Biology, 2019, 79 : 1319 - 1355
  • [45] Spatiotemporal dynamics of a reaction-diffusion model of pollen tube tip growth
    Tian, Chenwei
    Shi, Qingyan
    Cui, Xinping
    Guo, Jingzhe
    Yang, Zhenbiao
    Shi, Junping
    JOURNAL OF MATHEMATICAL BIOLOGY, 2019, 79 (04) : 1319 - 1355
  • [46] SPARSE OPTIMAL CONTROL OF PATTERN FORMATIONS FOR AN SIR REACTION-DIFFUSION EPIDEMIC MODEL
    Chang, Lili
    Gong, Wei
    Jin, Zhen
    Sun, Gui-Quan
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (05) : 1764 - 1790
  • [47] Hopf bifurcation and optimal control of a delayed reaction-diffusion brucellosis disease model
    Ma, An
    Hu, Jing
    Li, Xining
    Xu, Xinzhong
    Zhang, Qimin
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [48] A reaction-diffusion model for competing languages
    Walters, Caroline E.
    MECCANICA, 2014, 49 (09) : 2189 - 2206
  • [49] A reaction-diffusion model of stored bagasse
    Macaskill, C
    Sexton, MJ
    Gray, BF
    ANZIAM JOURNAL, 2001, 43 : 13 - 34
  • [50] A reaction-diffusion model of cancer invasion
    Gatenby, RA
    Gawlinski, ET
    CANCER RESEARCH, 1996, 56 (24) : 5745 - 5753