OPTIMAL CHEMOTHERAPY FOR BRAIN TUMOR GROWTH IN A REACTION-DIFFUSION MODEL

被引:6
|
作者
Yousefnezhad, Mohsen [1 ]
Kao, Chiu-Yen [2 ]
Mohammadi, Seyyed Abbas [3 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz, Iran
[2] Claremont McKenna Coll, Dept Math Sci, Claremont, CA 91711 USA
[3] Univ Yasuj, Coll Sci, Dept Math, Yasuj 7591874934, Iran
关键词
reaction-diffusion equation; brain tumor; optimal chemotherapy strategy; MATHEMATICAL-MODEL; GLIOMA GROWTH; CANCER-CHEMOTHERAPY; ROBUST-CONTROL; GLIOBLASTOMA; RADIOTHERAPY; EFFICACY; DYNAMICS; MTD;
D O I
10.1137/20M135995X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we address the question of determining optimal chemotherapy strategies to prevent the growth of brain tumor population. To do so, we consider a reaction-diffusion model which describes the diffusion and proliferation of tumor cells and a minimization problem corresponding to it. We shall establish that the optimization problem admits a solution and obtain a necessary condition for the minimizer. In a specific case, the optimizer is calculated explicitly, and we prove that it is unique. Then, a gradient-based efficient numerical algorithm is developed in order to determine the optimizer. Our results suggest a bang-bang chemotherapy strategy in a cycle which starts at the maximum dose and terminates with a rest period. Numerical simulations based upon our algorithm on a real brain image show that this is in line with the maximum tolerated dose (MTD), a standard chemotherapy protocol.
引用
收藏
页码:1077 / 1097
页数:21
相关论文
共 50 条
  • [21] A STOCHASTIC REACTION-DIFFUSION MODEL
    KOTELENEZ, P
    LECTURE NOTES IN MATHEMATICS, 1989, 1390 : 132 - 137
  • [22] Optimal control of pattern formations for an SIR reaction-diffusion epidemic model
    Chang, Lili
    Gao, Shupeng
    Wang, Zhen
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
  • [23] Optimal control and parameter identification of a reaction-diffusion network propagation model
    Zhu, Linhe
    Yuan, Tianyu
    NONLINEAR DYNAMICS, 2023, 111 (23) : 21707 - 21733
  • [24] Optimal control problems of a reaction-diffusion ecological model with a protection zone
    Zhou, Min
    Xiang, Huili
    JOURNAL OF PROCESS CONTROL, 2022, 120 : 97 - 114
  • [25] Optimal control problem of an SIR reaction-diffusion model with inequality constraints
    Jang, Junyoung
    Kwon, Hee-Dae
    Lee, Jeehyun
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 171 : 136 - 151
  • [26] A DCE-MRI Driven 3-D Reaction-Diffusion Model of Solid Tumor Growth
    Roque, Thais
    Risser, Laurent
    Kersemans, Veerle
    Smart, Sean
    Allen, Danny
    Kinchesh, Paul
    Gilchrist, Stuart
    Gomes, Ana L.
    Schnabel, Julia A.
    Chappell, Michael A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (03) : 724 - 732
  • [27] A reaction-diffusion model with nonlinearity driven diffusion
    Man-jun Ma
    Jia-jia Hu
    Jun-jie Zhang
    Ji-cheng Tao
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 290 - 302
  • [28] A reaction-diffusion model with nonlinearity driven diffusion
    Ma Man-jun
    Hu Jia-jia
    Zhang Jun-jie
    Tao Ji-cheng
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (03) : 290 - 302
  • [29] Optimal control of networked reaction-diffusion systems
    Gao, Shupeng
    Chang, Lili
    Romic, Ivan
    Wang, Zhen
    Jusup, Marko
    Holme, Petter
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (188)
  • [30] OPTIMAL CONTROL OF REACTION-DIFFUSION SYSTEMS WITH HYSTERESIS
    Muench, Christian
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (04) : 1453 - 1488