OPTIMAL CHEMOTHERAPY FOR BRAIN TUMOR GROWTH IN A REACTION-DIFFUSION MODEL

被引:6
|
作者
Yousefnezhad, Mohsen [1 ]
Kao, Chiu-Yen [2 ]
Mohammadi, Seyyed Abbas [3 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz, Iran
[2] Claremont McKenna Coll, Dept Math Sci, Claremont, CA 91711 USA
[3] Univ Yasuj, Coll Sci, Dept Math, Yasuj 7591874934, Iran
关键词
reaction-diffusion equation; brain tumor; optimal chemotherapy strategy; MATHEMATICAL-MODEL; GLIOMA GROWTH; CANCER-CHEMOTHERAPY; ROBUST-CONTROL; GLIOBLASTOMA; RADIOTHERAPY; EFFICACY; DYNAMICS; MTD;
D O I
10.1137/20M135995X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we address the question of determining optimal chemotherapy strategies to prevent the growth of brain tumor population. To do so, we consider a reaction-diffusion model which describes the diffusion and proliferation of tumor cells and a minimization problem corresponding to it. We shall establish that the optimization problem admits a solution and obtain a necessary condition for the minimizer. In a specific case, the optimizer is calculated explicitly, and we prove that it is unique. Then, a gradient-based efficient numerical algorithm is developed in order to determine the optimizer. Our results suggest a bang-bang chemotherapy strategy in a cycle which starts at the maximum dose and terminates with a rest period. Numerical simulations based upon our algorithm on a real brain image show that this is in line with the maximum tolerated dose (MTD), a standard chemotherapy protocol.
引用
收藏
页码:1077 / 1097
页数:21
相关论文
共 50 条
  • [31] Optimal control of a class of reaction-diffusion systems
    Casas, Eduardo
    Ryll, Christopher
    Troeltzsch, Fredi
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 70 (03) : 677 - 707
  • [32] Prediction of Response to Neoadjuvant Chemotherapy Using a Mechanically Coupled Reaction-Diffusion Model
    Weis, J.
    Miga, M.
    Li, X.
    Arlinghaus, L.
    Chakravarthy, A.
    Abramson, V.
    Farley, J.
    Yankeelov, T.
    MEDICAL PHYSICS, 2014, 41 (06) : 509 - 509
  • [33] The evolution of fast reaction:: a reaction-diffusion model
    Büger, M
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (04) : 543 - 554
  • [34] A Shortcoming of the Fisher-Kolmogorov Reaction-Diffusion Equation for Modeling Tumor Growth
    Dahlman, E.
    Watanabe, Y.
    MEDICAL PHYSICS, 2016, 43 (06) : 3486 - 3487
  • [35] Reaction-diffusion model for thermal growth of silicon nitride films on Si
    de Almeida, RMC
    Baumvol, IJR
    PHYSICAL REVIEW B, 2000, 62 (24) : R16255 - R16258
  • [36] Numerical morphological analysis of fungal growth based on reaction-diffusion model
    IGSES, Kyushu Univ., Japan
    不详
    J. Environ. Eng., 2009, 637 (339-346):
  • [37] SPATIAL FLUCTUATIONS IN REACTION-DIFFUSION SYSTEMS - A MODEL FOR EXPONENTIAL-GROWTH
    VANDONGEN, PGJ
    JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (1-2) : 87 - 114
  • [38] Optimal control of an invasive species using a reaction-diffusion model and linear programming
    Bonneau, Mathieu
    Johnson, Fred A.
    Smith, Brian J.
    Romagosa, Christina M.
    Martin, Julien
    Mazzotti, Frank J.
    ECOSPHERE, 2017, 8 (10):
  • [39] Numerical Morphological Analysis of Fungal Growth based on a Reaction-Diffusion Model
    Ito, Kazuhide
    Mizuno, Yu
    BIOCONTROL SCIENCE, 2009, 14 (01) : 21 - 30
  • [40] An Optimal Treatment Strategy for a Leukemia Immune Model Governed by Reaction-Diffusion Equations
    Huili Xiang
    Min Zhou
    Xuanfeng Liu
    Journal of Dynamical and Control Systems, 2023, 29 : 1219 - 1239