Hopf bifurcation and optimal control of a delayed reaction-diffusion brucellosis disease model

被引:0
|
作者
Ma, An [1 ,2 ]
Hu, Jing [1 ,2 ]
Li, Xining [1 ,2 ]
Xu, Xinzhong [1 ,2 ]
Zhang, Qimin [1 ]
机构
[1] Ningxia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China
[2] Ningxia Univ, Ningxia Basic Sci Res Ctr Math, Yinchuan 750021, Peoples R China
关键词
Brucellosis disease model; Hopf bifurcation; optimal control; discrete time delay; reaction-diffusion; TRANSMISSION DYNAMICS; SHEEP BRUCELLOSIS; GLOBAL DYNAMICS; JILIN PROVINCE; STABILITY; CATTLE;
D O I
10.1142/S1793524524500608
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a brucellosis disease model with reaction-diffusion and time delay. The model takes into account both the direct and indirect transmission of infected animals and pathogens in the environment. By analyzing the associated characteristic equation, the local stability of the unique positive equilibrium point is established. The existence of Hopf bifurcations at the positive equilibrium point is also examined by considering the discrete time delay as a bifurcation parameter. Additionally, an optimal control analysis is conducted to minimize disease outbreaks and control costs. This includes reducing the exposure of susceptible animals to infected animals, removing infected animals from herds, and reducing emissions of brucella into the environment. By constructing Hamiltonian function and applying Pontryagin's maximum principle, the necessary conditions for the existence of optimal control are given. Finally, the existence of bifurcation periodic solutions and the effectiveness of control strategies are illustrated through numerical simulations.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] An algorithm for Hopf bifurcation analysis of a delayed reaction-diffusion model
    Kayan, S.
    Merdan, H.
    NONLINEAR DYNAMICS, 2017, 89 (01) : 345 - 366
  • [2] Hopf bifurcation of a delayed reaction-diffusion model with advection term
    Ma, Li
    Wei, Dan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 212 (212)
  • [3] Double Hopf Bifurcation in Delayed reaction-diffusion Systems
    Du, Yanfei
    Niu, Ben
    Guo, Yuxiao
    Wei, Junjie
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (01) : 313 - 358
  • [4] Properties of Hopf bifurcation to a reaction-diffusion population model with nonlocal delayed effect
    Yan, Xiang-Ping
    Zhang, Cun-Hua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 385 : 155 - 182
  • [5] Stability and Hopf bifurcation of a delayed reaction-diffusion neural network
    Gan, Qintao
    Xu, Rui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (12) : 1450 - 1459
  • [6] Hopf bifurcation in a generalized Logistic reaction-diffusion population model with instantaneous and delayed feedback
    Yan, Xiang-Ping
    Zhang, Cun-Hua
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 774 - 792
  • [7] Hopf bifurcation in a spatial heterogeneous and nonlocal delayed reaction-diffusion equation
    Li, Yanqiu
    Zhou, Yibo
    Zhu, Lushuai
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [8] Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model
    Guo, Gaihui
    Li, Bingfang
    Wei, Meihua
    Wu, Jianhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) : 265 - 277
  • [9] An algorithm for Hopf bifurcation analysis of a delayed reaction–diffusion model
    Ş. Kayan
    H. Merdan
    Nonlinear Dynamics, 2017, 89 : 345 - 366
  • [10] Bifurcation and control of a delayed reaction-diffusion rumor spreading model with medium mechanism
    Zhu, Linhe
    Zhao, Hongyong
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 1065 - 1070