Groups of two-braid virtual knots

被引:3
|
作者
Kanenobu, Taizo [1 ]
Tsuji, Kazunori [1 ]
机构
[1] Osaka City Univ, Dept Math, Sumiyoshi Ku, Osaka 5588585, Japan
基金
日本学术振兴会;
关键词
virtual knot; knot group; commutator subgroup; ribbon torus knot; higher dimensional knot group; bracket polynomial; Jones polynomial; Sawollek polynomial;
D O I
10.1142/S0218216507005476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Giving a presentation of the group of a 2-braid virtual knot or link, we consider the groups of three families of 2-braid virtual knots. Each of them has a certain feature; for example, we can show: for any positive integer N, there exists a virtual knot group with an element of order N. It is known that the collection of the virtual knot groups is the same as that of the ribbon T-2-knot groups. Using our examples we discuss the relationship among the virtual knot groups and other knot groups such as ribbon S-2-knot groups, S-2-knot groups, T-2-knot groups, and S-3-knot groups.
引用
收藏
页码:671 / 697
页数:27
相关论文
共 50 条
  • [11] Commutator subgroups of virtual and welded braid groups
    Bardakov, Valeriy G.
    Gongopadhyay, Krishnendu
    Neshchadim, Mikhail, V
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (03) : 507 - 533
  • [12] The unrestricted virtual braid groups UV Bn
    Makri, Stavroula
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2022, 31 (12)
  • [13] Unrestricted virtual braids and crystallographic braid groups
    Bellingeri, Paolo
    Guaschi, John
    Makri, Stavroula
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):
  • [14] Unrestricted virtual braids and crystallographic braid groups
    Paolo Bellingeri
    John Guaschi
    Stavroula Makri
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [15] Lifting Theorem for the Virtual Pure Braid Groups
    Valeriy GBARDAKOV
    Jie WU
    Chinese Annals of Mathematics,Series B, 2025, (01) : 85 - 114
  • [16] Representation of virtual braid groups to rook algebras and virtual links invariants
    Gotin, Konstantin
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (06)
  • [17] On the Braid Index of Kanenobu Knots
    Takioka, Hideo
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (01): : 169 - 180
  • [18] Virtual knot groups and almost classical knots
    Boden, Hans U.
    Gaudreau, Robin
    Harper, Eric
    Nicas, Andrew J.
    White, Lindsay
    FUNDAMENTA MATHEMATICAE, 2017, 238 (02) : 101 - 142
  • [19] A SIMPLE SOLUTION TO THE WORD PROBLEM FOR VIRTUAL BRAID GROUPS
    Bellingeri, Paolo
    Cisneros de la Cruz, Bruno A.
    Paris, Luis
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 283 (02) : 271 - 287
  • [20] VIRTUAL BRAID GROUPS OF TYPE B AND WEAK CATEGORIFICATION
    Thiel, Anne-Laure
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (02)