Unrestricted virtual braids and crystallographic braid groups

被引:0
|
作者
Paolo Bellingeri
John Guaschi
Stavroula Makri
机构
[1] Normandie Univ,
[2] UNICAEN,undefined
[3] CNRS,undefined
[4] LMNO,undefined
关键词
Braid groups; Virtual and welded braid groups; Unrestricted virtual braid groups; Primary 20F36; Secondary 20H15;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the crystallographic braid group Bn/[Pn,Pn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n/[P_n,P_n]$$\end{document} embeds naturally in the group of unrestricted virtual braids UVBn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$UVB_n$$\end{document}, we give new proofs of known results about the torsion elements of Bn/[Pn,Pn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n/[P_n,P_n]$$\end{document}, and we characterise the torsion elements of UVBn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$UVB_n$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Unrestricted virtual braids and crystallographic braid groups
    Bellingeri, Paolo
    Guaschi, John
    Makri, Stavroula
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):
  • [2] Unrestricted virtual braids, fused links and other quotients of virtual braid groups
    Bardakov, Valeriy G.
    Bellingeri, Paolo
    Damiani, Celeste
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2015, 24 (12)
  • [3] The unrestricted virtual braid groups UV Bn
    Makri, Stavroula
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2022, 31 (12)
  • [4] Virtual braid groups, virtual twin groups and crystallographic groups
    Junior, Paulo Cesar Cerqueira Dos Santos
    Ocampo, Oscar
    JOURNAL OF ALGEBRA, 2023, 632 : 567 - 601
  • [5] On the unrestricted virtual singular braid
    Ligouras, Panagiote
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01): : 183 - 200
  • [6] DECOMPOSABLE BRAIDS AS SUBGROUPS OF BRAID GROUPS
    LEVINSON, H
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 202 (FEB) : 51 - 55
  • [7] Maps to virtual braids and braid representations
    Manturov, V. O.
    Nikonov, I. M.
    RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (02) : 393 - 395
  • [8] Pure virtual braids homotopic to the identity braid
    Dye, H. A.
    FUNDAMENTA MATHEMATICAE, 2009, 202 (03) : 225 - 239
  • [9] A quotient of the Artin braid groups related to crystallographic groups
    Goncalves, Daciberg Lima
    Guaschi, John
    Ocampo, Oscar
    JOURNAL OF ALGEBRA, 2017, 474 : 393 - 423
  • [10] Representations of virtual braids by automorphisms and virtual knot groups
    Bardakov, Valeriy G.
    Mikhalchishina, Yuliya A.
    Neshchadim, Mikhail V.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (01)