Unrestricted virtual braids and crystallographic braid groups

被引:0
|
作者
Paolo Bellingeri
John Guaschi
Stavroula Makri
机构
[1] Normandie Univ,
[2] UNICAEN,undefined
[3] CNRS,undefined
[4] LMNO,undefined
关键词
Braid groups; Virtual and welded braid groups; Unrestricted virtual braid groups; Primary 20F36; Secondary 20H15;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the crystallographic braid group Bn/[Pn,Pn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n/[P_n,P_n]$$\end{document} embeds naturally in the group of unrestricted virtual braids UVBn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$UVB_n$$\end{document}, we give new proofs of known results about the torsion elements of Bn/[Pn,Pn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n/[P_n,P_n]$$\end{document}, and we characterise the torsion elements of UVBn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$UVB_n$$\end{document}.
引用
收藏
相关论文
共 50 条