Commutator subgroups of virtual and welded braid groups

被引:2
|
作者
Bardakov, Valeriy G. [1 ,2 ,3 ]
Gongopadhyay, Krishnendu [4 ]
Neshchadim, Mikhail, V [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Novosibirsk State Agrarian Univ, Dept AOI, Dobrolyubova St 160, Novosibirsk 630039, Russia
[4] IISER, Sect 81,PO Manauli, Sas Nagar 140306, Punjab, India
基金
俄罗斯科学基金会;
关键词
Virtual braid; welded braid; commutator subgroup; perfect group;
D O I
10.1142/S0218196719500127
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let VBn, respectively WBn denote the virtual, respectively welded, braid group on n-strands. We study their commutator subgroups VBn' = [VBn , VBn] and, WBn' = (WBn,WBn], respectively. We obtain a set of generators and definng relations for these commutator subgroups. In particular, we prove that VBn' is finitely generated if and only if n >= 4, and WBn' is finitely generated for n >= 3. Also, we prove that VB3'/VB3 '' = Z(3)circle plus Z(3)circle plus Z(infinity), VB4'/VB4 '' = Z(3)circle plus Z(3)circle plus Z(3), WB3'/WB3 '' = Z(3)circle plus Z(3)circle plus Z(3)circle plus Z, WB4'/WB4 '' = Z3, and for n >= 5 the commutator subgroups VBn' and WBn' are perfect, i.e. the commutator subgroup is equal to the second commutator subgroup.
引用
收藏
页码:507 / 533
页数:27
相关论文
共 50 条