Finite Element Approximation for the Fractional Eigenvalue Problem

被引:22
|
作者
Pablo Borthagaray, Juan [1 ,2 ]
Del Pezzo, Leandro M. [3 ,4 ]
Martinez, Sandra [1 ,2 ]
机构
[1] Univ Buenos Aires, CONICET, IMAS, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Ave Figueroa Alcorta 7350,C1428BCW, Buenos Aires, DF, Argentina
[4] Univ Torcuato Tella, Dept Matemat & Estadist, Ave Figueroa Alcorta 7350,C1428BCW, Buenos Aires, DF, Argentina
关键词
Fractional Laplacian; Eigenvalue problem; Finite element method; BREZIS-NIRENBERG RESULT; REGULARITY; EQUATION; DISPERSION; LAPLACIAN; STATES;
D O I
10.1007/s10915-018-0710-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to study a finite element method for finding solutions to the eigenvalue problem for the fractional Laplacian. We prove that the discrete eigenvalue problem converges to the continuous one and we show the order of such convergence. Finally, we perform some numerical experiments and compare our results with previous work by other authors.
引用
收藏
页码:308 / 329
页数:22
相关论文
共 50 条
  • [41] Finite Element Approximation of Space Fractional Optimal Control Problem with Integral State Constraint
    Zhou, Zhaojie
    Song, Jiabin
    Chen, Yanping
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (04) : 1027 - 1049
  • [42] Finite element approximation of optimal control problem with integral fractional Laplacian and state constraint
    Zhou, Zhaojie
    Liu, Jie
    Chen, Yanping
    Wang, Qiming
    NUMERICAL ALGORITHMS, 2023, 94 (04) : 1983 - 2004
  • [43] Finite element approximation of optimal control problem with integral fractional Laplacian and state constraint
    Zhaojie Zhou
    Jie Liu
    Yanping Chen
    Qiming Wang
    Numerical Algorithms, 2023, 94 : 1983 - 2004
  • [44] A reduced order model for the finite element approximation of eigenvalue problems
    Bertrand, Fleurianne
    Boffi, Daniele
    Halim, Abdul
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [45] EIGENVALUE EXTRAPOLATION FORBIQUADRATIC FINITE ELEMENT APPROXIMATION IN RECTANGULAR DOMAIN
    LUO Ping (Institute of Mathematics
    SystemsScienceandMathematicalSciences, 1997, (01) : 28 - 32
  • [46] Enhancing finite element approximation for eigenvalue problems by projection method
    Liu, Huipo
    Yan, Ningning
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 233 : 81 - 91
  • [47] The lower approximation of eigenvalue by lumped mass finite element method
    Hu, J
    Huang, YQ
    Shen, HM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (04) : 545 - 556
  • [48] A posteriori error estimates for the finite element approximation of eigenvalue problems
    Durán, RG
    Padra, C
    Rodríguez, R
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (08): : 1219 - 1229
  • [49] Finite element approximation with numerical integration for differential eigenvalue problems
    Solov'ev, Sergey I.
    APPLIED NUMERICAL MATHEMATICS, 2015, 93 : 206 - 214
  • [50] A STABILIZED FINITE ELEMENT METHOD FOR THE STOKES EIGENVALUE PROBLEM
    Yuan, Maoqin
    Huang, Pengzhan
    MATHEMATICAL REPORTS, 2024, 26 (01): : 1 - 16