Finite Element Approximation for the Fractional Eigenvalue Problem

被引:22
|
作者
Pablo Borthagaray, Juan [1 ,2 ]
Del Pezzo, Leandro M. [3 ,4 ]
Martinez, Sandra [1 ,2 ]
机构
[1] Univ Buenos Aires, CONICET, IMAS, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Ave Figueroa Alcorta 7350,C1428BCW, Buenos Aires, DF, Argentina
[4] Univ Torcuato Tella, Dept Matemat & Estadist, Ave Figueroa Alcorta 7350,C1428BCW, Buenos Aires, DF, Argentina
关键词
Fractional Laplacian; Eigenvalue problem; Finite element method; BREZIS-NIRENBERG RESULT; REGULARITY; EQUATION; DISPERSION; LAPLACIAN; STATES;
D O I
10.1007/s10915-018-0710-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to study a finite element method for finding solutions to the eigenvalue problem for the fractional Laplacian. We prove that the discrete eigenvalue problem converges to the continuous one and we show the order of such convergence. Finally, we perform some numerical experiments and compare our results with previous work by other authors.
引用
收藏
页码:308 / 329
页数:22
相关论文
共 50 条
  • [31] Adaptive Nonconforming Finite Element Approximation of Eigenvalue Clusters
    Gallistl, Dietmar
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2014, 14 (04) : 509 - 535
  • [32] Finite element analysis of the Oseen eigenvalue problem
    Lepe, Felipe
    Rivera, Gonzalo
    Vellojin, Jesus
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 425
  • [33] Immersed finite element method for eigenvalue problem
    Lee, Seungwoo
    Kwak, Do Y.
    Sim, Imbo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 410 - 426
  • [34] The finite element approximation of a 2D maxwell eigenvalue problem in a domain with curved boundaries
    Hamelinck, Wouter
    Van Keer, Roger
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 252 - +
  • [35] Boundary element approximation for Maxwell's eigenvalue problem
    Wieners, Christian
    Xin, Jiping
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (18) : 2524 - 2539
  • [36] A noncoforming virtual element approximation for the Oseen eigenvalue problem
    Adak, Dibyendu
    Lepe, Felipe
    Rivera, Gonzalo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2025,
  • [37] Finite Element Approximation of the Minimal Eigenvalue and the Corresponding Positive Eigenfunction of a Nonlinear Sturm—Liouville Problem
    D. M. Korosteleva
    P. S. Solov’ev
    S. I. Solov’ev
    Lobachevskii Journal of Mathematics, 2019, 40 : 1959 - 1966
  • [38] Finite element approximation of fractional Neumann problems
    Bersetche, Francisco M.
    Pablo Borthagaray, Juan
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) : 3207 - 3240
  • [39] Adaptive Finite Element Approximation of Sparse Optimal Control Problem with Integral Fractional Laplacian
    Wang, Fangyuan
    Wang, Qiming
    Zhou, Zhaojie
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 102 (01)
  • [40] Finite element approximation of time fractional optimal control problem with integral state constraint
    Liu, Jie
    Zhou, Zhaojie
    AIMS MATHEMATICS, 2021, 6 (01): : 979 - 997