Finite Element Approximation for the Fractional Eigenvalue Problem

被引:22
|
作者
Pablo Borthagaray, Juan [1 ,2 ]
Del Pezzo, Leandro M. [3 ,4 ]
Martinez, Sandra [1 ,2 ]
机构
[1] Univ Buenos Aires, CONICET, IMAS, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, FCEyN, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[3] Consejo Nacl Invest Cient & Tecn, Ave Figueroa Alcorta 7350,C1428BCW, Buenos Aires, DF, Argentina
[4] Univ Torcuato Tella, Dept Matemat & Estadist, Ave Figueroa Alcorta 7350,C1428BCW, Buenos Aires, DF, Argentina
关键词
Fractional Laplacian; Eigenvalue problem; Finite element method; BREZIS-NIRENBERG RESULT; REGULARITY; EQUATION; DISPERSION; LAPLACIAN; STATES;
D O I
10.1007/s10915-018-0710-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to study a finite element method for finding solutions to the eigenvalue problem for the fractional Laplacian. We prove that the discrete eigenvalue problem converges to the continuous one and we show the order of such convergence. Finally, we perform some numerical experiments and compare our results with previous work by other authors.
引用
收藏
页码:308 / 329
页数:22
相关论文
共 50 条