Enhancing finite element approximation for eigenvalue problems by projection method

被引:7
|
作者
Liu, Huipo [1 ]
Yan, Ningning [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[2] Chinese Acad Sci, LSEC, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite element approximation; Projection method; Eigenvalue problems; A posteriori error estimate; Superconvergence; POINTWISE GRADIENT ERROR; A-POSTERIORI ESTIMATORS; QUASI-UNIFORM MESHES; IRREGULAR MESHES; STOKES EQUATIONS; SUPERCONVERGENCE; RECOVERY;
D O I
10.1016/j.cma.2012.04.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper establishes the superconvergence and the related recovery type a posteriori error estimators based on projection method for finite element approximation of the elliptic eigenvalue problems. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares method. The results are based on some regularity assumption for the elliptic problem, and are applicable to the finite element approximations of self-adjoint elliptic eigenvalue problems with general quasi-regular partitions. Therefore, the result of this paper can be employed to provide useful a posteriori error estimators in adaptive finite element computation under unstructured meshes. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 50 条