Symmetry of constrained minimizers of the Cahn-Hilliard energy on the torus

被引:0
|
作者
Gelantalis, Michael [1 ]
Wagner, Alfred [2 ]
Westdickenberg, Maria G. [2 ]
机构
[1] Univ Tennessee Knoxville, Knoxville, TN USA
[2] Rhein Westfal TH Aachen, Aachen, Germany
关键词
Cahn-Hilliard; Steiner symmetrization; Two-point rearrangement; Bonnesen inequality; REARRANGEMENTS; EXISTENCE; EQUATIONS;
D O I
10.1016/j.na.2020.111842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish sufficient conditions for a function on the torus to be equal to its Steiner symmetrization and apply the result to so-called volume-constrained minimizers of the Cahn-Hilliard energy. The resulting connectedness of superlevel sets is used in two dimensions together with the Bonnesen inequality to quantitatively estimate the sphericity of minimizers. We also show how two-point rearrangements can be used to give an alternate proof of symmetry for the constrained minimizers of the Cahn-Hilliard model. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条