Symmetry of constrained minimizers of the Cahn-Hilliard energy on the torus

被引:0
|
作者
Gelantalis, Michael [1 ]
Wagner, Alfred [2 ]
Westdickenberg, Maria G. [2 ]
机构
[1] Univ Tennessee Knoxville, Knoxville, TN USA
[2] Rhein Westfal TH Aachen, Aachen, Germany
关键词
Cahn-Hilliard; Steiner symmetrization; Two-point rearrangement; Bonnesen inequality; REARRANGEMENTS; EXISTENCE; EQUATIONS;
D O I
10.1016/j.na.2020.111842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish sufficient conditions for a function on the torus to be equal to its Steiner symmetrization and apply the result to so-called volume-constrained minimizers of the Cahn-Hilliard energy. The resulting connectedness of superlevel sets is used in two dimensions together with the Bonnesen inequality to quantitatively estimate the sphericity of minimizers. We also show how two-point rearrangements can be used to give an alternate proof of symmetry for the constrained minimizers of the Cahn-Hilliard model. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] PEARLING BIFURCATIONS IN THE STRONG FUNCTIONALIZED CAHN-HILLIARD FREE ENERGY
    Kraitzman, Noa
    Promislow, Keith
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (03) : 3395 - 3426
  • [32] A POSTERIORI ESTIMATES FOR THE CAHN-HILLIARD EQUATION WITH OBSTACLE FREE ENERGY
    Banas, L'ubomir
    Nuernberg, Robert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (05): : 1003 - 1026
  • [33] A Comparison of Cahn-Hilliard and Navier-Stokes-Cahn-Hilliard Models on Manifolds
    Olshanskii, Maxim
    Palzhanov, Yerbol
    Quaini, Annalisa
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (04) : 929 - 945
  • [34] Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System
    Wenbin Chen
    Cheng Wang
    Shufen Wang
    Xiaoming Wang
    Steven M. Wise
    Journal of Scientific Computing, 2020, 84
  • [35] An Overview of Network Bifurcations in the Functionalized Cahn-Hilliard Free Energy
    Kraitzman, Noa
    Promislow, Keith
    MATHEMATICS OF ENERGY AND CLIMATE CHANGE, 2015, 2 : 191 - 214
  • [36] GLOBAL ATTRACTOR FOR THE CAHN-HILLIARD SYSTEM
    CHOLEWA, JW
    DLOTKO, T
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1994, 49 (02) : 277 - 292
  • [37] SPECIAL CASE OF THE CAHN-HILLIARD EQUATION
    Frolovskaya, O. A.
    Admaev, O. V.
    Pukhnachev, V. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 324 - 334
  • [38] A new formulation of the Cahn-Hilliard equation
    Miranville, A
    Piétrus, A
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (02) : 285 - 307
  • [39] A CAHN-HILLIARD MODEL FOR CELL MOTILITY
    Cucchi, Alessandro
    Mellet, Antoine
    Meunier, Nicolas
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) : 3843 - 3880
  • [40] A CONSTRAINED CONVEX SPLITTING SCHEME FOR THE VECTOR-VALUED CAHN-HILLIARD EQUATION
    Lee, Hyun Geun
    Lee, June-Yub
    Shin, Jaemin
    JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2019, 23 (01) : 1 - 18