Symmetry of constrained minimizers of the Cahn-Hilliard energy on the torus

被引:0
|
作者
Gelantalis, Michael [1 ]
Wagner, Alfred [2 ]
Westdickenberg, Maria G. [2 ]
机构
[1] Univ Tennessee Knoxville, Knoxville, TN USA
[2] Rhein Westfal TH Aachen, Aachen, Germany
关键词
Cahn-Hilliard; Steiner symmetrization; Two-point rearrangement; Bonnesen inequality; REARRANGEMENTS; EXISTENCE; EQUATIONS;
D O I
10.1016/j.na.2020.111842
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish sufficient conditions for a function on the torus to be equal to its Steiner symmetrization and apply the result to so-called volume-constrained minimizers of the Cahn-Hilliard energy. The resulting connectedness of superlevel sets is used in two dimensions together with the Bonnesen inequality to quantitatively estimate the sphericity of minimizers. We also show how two-point rearrangements can be used to give an alternate proof of symmetry for the constrained minimizers of the Cahn-Hilliard model. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry
    Stoth, BEE
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (01) : 154 - 183
  • [42] Doubly nonlocal Cahn-Hilliard equations
    Gal, Ciprian G.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (02): : 357 - 392
  • [43] Pulled fronts in the Cahn-Hilliard equation
    Malomed, BA
    Frantzeskakis, DJ
    Nistazakis, HE
    Yannacopoulos, AN
    Kevrekidis, PG
    PHYSICS LETTERS A, 2002, 295 (5-6) : 267 - 272
  • [44] CAHN-HILLIARD THEORY AND IRREVERSIBLE THERMODYNAMICS
    FALK, F
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1992, 17 (01) : 53 - 65
  • [45] On a Cahn-Hilliard model for image segmentation
    Li, Lu
    Cherfils, Laurence
    Miranville, Alain
    Rogeon, Philippe
    Guillevin, Remy
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5753 - 5766
  • [46] A Cahn-Hilliard equation with singular diffusion
    Schimperna, Giulio
    Pawlow, Irena
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) : 779 - 803
  • [47] Cahn-Hilliard system with proliferation term
    Nimi, Aymard Christbert
    Langa, Franck Davhys Reval
    ASYMPTOTIC ANALYSIS, 2024, 140 (1-2) : 123 - 145
  • [48] Stationary solutions for the Cahn-Hilliard equation
    Wei, JC
    Winter, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04): : 459 - 492
  • [49] Cahn-Hilliard equations on an evolving surface
    Caetano, D.
    Elliott, C. M.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (05) : 937 - 1000