Nonhomogeneous Cahn-Hilliard fluids

被引:68
|
作者
Boyer, F [1 ]
机构
[1] Univ Bordeaux 1, F-33405 Talence, France
关键词
nonhomogeneous Navier-Stokes equation; Cahn-Hilliard equation;
D O I
10.1016/S0294-1449(00)00063-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are interested in the study of a model of nonhomogeneous diphasic incompressible flow, More precisely we consider a coupling of a Cahn-Hilliard and an incompressible Navier-Stokes equations where the densities of the phases are different. For this general model we can only show the local existence of a unique very regular solution and the existence of weaker solutions is still an open problem. But, if we look at the behavior of the system when the densities tends to be equal (slightly nonhomogeneous case), we show the existence of a global weak solution and of a unique local strong solution (which is in fact global in 2D). Finally, an asymptotic stability result for the metastable states: is shown in this slightly nonhomogeneous case. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:225 / 259
页数:35
相关论文
共 50 条
  • [1] CAHN-HILLIARD VS SINGULAR CAHN-HILLIARD EQUATIONS IN SIMULATIONS OF IMMISCIBLE BINARY FLUIDS
    Chen, Lizhen
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (04): : 1050 - 1060
  • [2] Cahn-hilliard theory for unstable granular fluids
    Van Noije, T.P.C.
    Ernst, M.H.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (02): : 1765 - 1782
  • [3] Cahn-Hilliard theory for unstable granular fluids
    van Noije, TPC
    Ernst, MH
    PHYSICAL REVIEW E, 2000, 61 (02): : 1765 - 1782
  • [4] Conservative multigrid methods for Cahn-Hilliard fluids
    Kim, J
    Kang, KK
    Lowengrub, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 193 (02) : 511 - 543
  • [5] PHASE TRANSITION AND SEPARATION IN COMPRESSIBLE CAHN-HILLIARD FLUIDS
    Fabrizio, Mauro
    Giorgi, Claudio
    Morro, Angelo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (01): : 73 - 88
  • [6] Cahn-Hilliard vs Singular Cahn-Hilliard Equations in Phase Field Modeling
    Zhang, Tianyu
    Wang, Qi
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2010, 7 (02) : 362 - 382
  • [7] ON THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    ZHENG, SM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 96 (04) : 339 - 357
  • [8] Phase separation in quasi-incompressible Cahn-Hilliard fluids
    Fabrizio, M.
    Giorgi, C.
    Morro, A.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2011, 30 (03) : 281 - 287
  • [9] Quasi-incompressible Cahn-Hilliard fluids and topological transitions
    Lowengrub, J
    Truskinovsky, L
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1978): : 2617 - 2654
  • [10] SYSTEMS OF CAHN-HILLIARD EQUATIONS
    EYRE, DJ
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (06) : 1686 - 1712