Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood

被引:73
|
作者
Yang, Yunwen [1 ]
Wang, Huixia Judy [2 ]
He, Xuming [3 ]
机构
[1] Google Inc, Seattle, WA 98103 USA
[2] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Bayesian; censoring; posterior; quantile regression; EMPIRICAL LIKELIHOOD; SURVIVAL ANALYSIS; MODEL; SELECTION;
D O I
10.1111/insr.12114
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper discusses the asymptotic validity of posterior inference of pseudo-Bayesian quantile regression methods with complete or censored data when an asymmetric Laplace likelihood is used. The asymmetric Laplace likelihood has a special place in the Bayesian quantile regression framework because the usual quantile regression estimator can be derived as the maximum likelihood estimator under such a model, and this working likelihood enables highly efficient Markov chain Monte Carlo algorithms for posterior sampling. However, it seems to be under-recognised that the stationary distribution for the resulting posterior does not provide valid posterior inference directly. We demonstrate that a simple adjustment to the covariance matrix of the posterior chain leads to asymptotically valid posterior inference. Our simulation results confirm that the posterior inference, when appropriately adjusted, is an attractive alternative to other asymptotic approximations in quantile regression, especially in the presence of censored data.
引用
收藏
页码:327 / 344
页数:18
相关论文
共 50 条
  • [21] Inexact Laplace Approximation and the Use of Posterior Mean in Bayesian Inference
    Spokoiny, Vladimir
    BAYESIAN ANALYSIS, 2025, 20 (01): : 1303 - 1330
  • [22] Bayesian quantile regression joint models: Inference and dynamic predictions
    Yang, Ming
    Luo, Sheng
    DeSantis, Stacia
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (08) : 2524 - 2537
  • [23] Gibbs sampling for mixture quantile regression based on asymmetric Laplace distribution
    Yang, Fengkai
    Shan, Ang
    Yuan, Haijing
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (05) : 1560 - 1573
  • [24] Spatial Quantile Multiple Regression Using the Asymmetric Laplace Process Comment
    Lin, Nan
    Chang, Chao
    BAYESIAN ANALYSIS, 2012, 7 (02): : 263 - 270
  • [25] Spatial Quantile Multiple Regression Using the Asymmetric Laplace Process Reply
    Lum, Kristian
    Gelfand, Alan E.
    BAYESIAN ANALYSIS, 2012, 7 (02): : 273 - 276
  • [26] Bayesian quantile inference
    Tsionas, EG
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2003, 73 (09) : 659 - 674
  • [27] Bayesian Quantile Regression Based on the Empirical Likelihood with Spike and Slab Priors
    Xi, Ruibin
    Li, Yunxiao
    Hu, Yiming
    BAYESIAN ANALYSIS, 2016, 11 (03): : 821 - 855
  • [28] Bayesian Multiple Quantile Regression for Linear Models Using a Score Likelihood
    Wu, Teng
    Narisetty, Naveen N.
    BAYESIAN ANALYSIS, 2021, 16 (03): : 875 - 903
  • [29] Variational Bayesian Inference for Quantile Regression Models with Nonignorable Missing Data
    Li, Xiaoning
    Tuerde, Mulati
    Hu, Xijian
    MATHEMATICS, 2023, 11 (18)
  • [30] Variational inference on a Bayesian adaptive lasso Tobit quantile regression model
    Wang, Zhiqiang
    Wu, Ying
    Cheng, WeiLi
    STAT, 2023, 12 (01):