Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood

被引:73
|
作者
Yang, Yunwen [1 ]
Wang, Huixia Judy [2 ]
He, Xuming [3 ]
机构
[1] Google Inc, Seattle, WA 98103 USA
[2] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Bayesian; censoring; posterior; quantile regression; EMPIRICAL LIKELIHOOD; SURVIVAL ANALYSIS; MODEL; SELECTION;
D O I
10.1111/insr.12114
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper discusses the asymptotic validity of posterior inference of pseudo-Bayesian quantile regression methods with complete or censored data when an asymmetric Laplace likelihood is used. The asymmetric Laplace likelihood has a special place in the Bayesian quantile regression framework because the usual quantile regression estimator can be derived as the maximum likelihood estimator under such a model, and this working likelihood enables highly efficient Markov chain Monte Carlo algorithms for posterior sampling. However, it seems to be under-recognised that the stationary distribution for the resulting posterior does not provide valid posterior inference directly. We demonstrate that a simple adjustment to the covariance matrix of the posterior chain leads to asymptotically valid posterior inference. Our simulation results confirm that the posterior inference, when appropriately adjusted, is an attractive alternative to other asymptotic approximations in quantile regression, especially in the presence of censored data.
引用
收藏
页码:327 / 344
页数:18
相关论文
共 50 条
  • [31] PSEUDO-BAYESIAN APPROACH FOR QUANTILE REGRESSION INFERENCE: ADAPTATION TO SPARSITY
    Li, Yuanzhi
    He, Xuming
    STATISTICA SINICA, 2024, 34 (02) : 793 - 815
  • [32] Bayesian quantile regression
    Yu, KM
    Moyeed, RA
    STATISTICS & PROBABILITY LETTERS, 2001, 54 (04) : 437 - 447
  • [33] Bayesian inference in quantile functions
    Nair, N. Unnikrishnan
    Sankaran, P. G.
    Dileepkumar, M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (14) : 4877 - 4889
  • [34] Inference on the quantile regression process
    Koenker, R
    Xiao, ZJ
    ECONOMETRICA, 2002, 70 (04) : 1583 - 1612
  • [35] Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response
    Zhang, Ting
    Wang, Lei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [36] Regularized Bayesian quantile regression
    El Adlouni, Salaheddine
    Salaou, Garba
    St-Hilaire, Andre
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (01) : 277 - 293
  • [37] Bayesian Regularized Quantile Regression
    Li, Qing
    Xi, Ruibin
    Lin, Nan
    BAYESIAN ANALYSIS, 2010, 5 (03): : 533 - 556
  • [38] Bayesian bridge quantile regression
    Alhamzawi, Rahim
    Algamal, Zakariya Yahya
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (03) : 944 - 956
  • [39] Bayesian bivariate quantile regression
    Waldmann, Elisabeth
    Kneib, Thomas
    STATISTICAL MODELLING, 2015, 15 (04) : 326 - 344
  • [40] Bayesian Spatial Quantile Regression
    Reich, Brian J.
    Fuentes, Montserrat
    Dunson, David B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 6 - 20