Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood

被引:73
|
作者
Yang, Yunwen [1 ]
Wang, Huixia Judy [2 ]
He, Xuming [3 ]
机构
[1] Google Inc, Seattle, WA 98103 USA
[2] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Bayesian; censoring; posterior; quantile regression; EMPIRICAL LIKELIHOOD; SURVIVAL ANALYSIS; MODEL; SELECTION;
D O I
10.1111/insr.12114
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper discusses the asymptotic validity of posterior inference of pseudo-Bayesian quantile regression methods with complete or censored data when an asymmetric Laplace likelihood is used. The asymmetric Laplace likelihood has a special place in the Bayesian quantile regression framework because the usual quantile regression estimator can be derived as the maximum likelihood estimator under such a model, and this working likelihood enables highly efficient Markov chain Monte Carlo algorithms for posterior sampling. However, it seems to be under-recognised that the stationary distribution for the resulting posterior does not provide valid posterior inference directly. We demonstrate that a simple adjustment to the covariance matrix of the posterior chain leads to asymptotically valid posterior inference. Our simulation results confirm that the posterior inference, when appropriately adjusted, is an attractive alternative to other asymptotic approximations in quantile regression, especially in the presence of censored data.
引用
收藏
页码:327 / 344
页数:18
相关论文
共 50 条
  • [41] Bayesian composite quantile regression
    Huang, Hanwen
    Chen, Zhongxue
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (18) : 3744 - 3754
  • [42] BAYESIAN QUANTILE REGRESSION METHODS
    Lancaster, Tony
    Jun, Sung Jae
    JOURNAL OF APPLIED ECONOMETRICS, 2010, 25 (02) : 287 - 307
  • [43] Regression Adjustment for Noncrossing Bayesian Quantile Regression
    Rodrigues, T.
    Fan, Y.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 275 - 284
  • [44] Inference in functional linear quantile regression
    Li, Meng
    Wang, Kehui
    Maity, Arnab
    Staicu, Ana-Maria
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
  • [45] A Unified Inference for Predictive Quantile Regression
    Liu, Xiaohui
    Long, Wei
    Peng, Liang
    Yang, Bingduo
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1526 - 1540
  • [46] Quantile inference for heteroscedastic regression models
    Chan, Ngai Hang
    Zhang, Rong-Mao
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) : 2079 - 2090
  • [47] Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression
    Geraci, Marco
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 57 (13): : 1 - 29
  • [48] Robust Inference for Censored Quantile Regression
    Tang, Yuanyuan
    Wang, Xiaorui
    Zhu, Jianming
    Lin, Hongmei
    Tang, Yanlin
    Tong, Tiejun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024,
  • [49] DISTRIBUTED INFERENCE FOR QUANTILE REGRESSION PROCESSES
    Volgushev, Stanislav
    Chao, Shih-Kang
    Cheng, Guang
    ANNALS OF STATISTICS, 2019, 47 (03): : 1634 - 1662
  • [50] NONSTANDARD QUANTILE-REGRESSION INFERENCE
    Goh, S. C.
    Knight, K.
    ECONOMETRIC THEORY, 2009, 25 (05) : 1415 - 1432