Gibbs sampling for mixture quantile regression based on asymmetric Laplace distribution

被引:3
|
作者
Yang, Fengkai [1 ,2 ]
Shan, Ang [1 ]
Yuan, Haijing [1 ,2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
基金
美国国家科学基金会;
关键词
Asymmetric Laplace distribution; Gibbs sampling; Mixture quantile regression; FINITE MIXTURE;
D O I
10.1080/03610918.2017.1419258
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the finite mixture of quantile regression model from a Bayesian perspective by assuming the errors have the asymmetric Laplace distribution (ALD), and develop the Gibbs sampling algorithm to estimate various quantile conditional on covariate in different groups using the Normal-Exponential representation of the ALD. We conduct several simulations under different error distributions to demonstrate the performance of the algorithm, and finally apply it to analyse a real data set, finding that the procedure has good performance.
引用
收藏
页码:1560 / 1573
页数:14
相关论文
共 50 条
  • [1] Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution
    Benoit, Dries F.
    Van den Poel, Dirk
    JOURNAL OF APPLIED ECONOMETRICS, 2012, 27 (07) : 1174 - 1188
  • [2] Quantile regression for longitudinal data using the asymmetric Laplace distribution
    Geraci, Marco
    Bottai, Matteo
    BIOSTATISTICS, 2007, 8 (01) : 140 - 154
  • [3] Gibbs sampling methods for Bayesian quantile regression
    Kozumi, Hideo
    Kobayashi, Genya
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) : 1565 - 1578
  • [4] Variable selection in quantile regression via Gibbs sampling
    Alhamzawi, Rahim
    Yu, Keming
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (04) : 799 - 813
  • [5] Flexible Bayesian quantile regression for nonlinear mixed effects models based on the generalized asymmetric Laplace distribution
    Yu, Hanjun
    Yu, Lichao
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2725 - 2750
  • [6] Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density
    Sriram, Karthik
    Ramamoorthi, R. V.
    Ghosh, Pulak
    BAYESIAN ANALYSIS, 2013, 8 (02): : 479 - 504
  • [7] New Gibbs sampling methods for bayesian regularized quantile regression
    Alhamzawi, Rahim
    Alhamzawi, Ahmed
    Ali, Haithem Taha Mohammad
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 110 : 52 - 65
  • [8] Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood
    Yang, Yunwen
    Wang, Huixia Judy
    He, Xuming
    INTERNATIONAL STATISTICAL REVIEW, 2016, 84 (03) : 327 - 344
  • [9] A sandwich likelihood correction for Bayesian quantile regression based on the misspecified asymmetric Laplace density
    Sriram, Karthik
    STATISTICS & PROBABILITY LETTERS, 2015, 107 : 18 - 26
  • [10] An Asymmetric Bimodal Distribution with Application to Quantile Regression
    Gomez, Yolanda M.
    Gomez-Deniz, Emilio
    Venegas, Osvaldo
    Gallardo, Diego, I
    Gomez, Hector W.
    SYMMETRY-BASEL, 2019, 11 (07):