Gibbs sampling for mixture quantile regression based on asymmetric Laplace distribution

被引:3
|
作者
Yang, Fengkai [1 ,2 ]
Shan, Ang [1 ]
Yuan, Haijing [1 ,2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
基金
美国国家科学基金会;
关键词
Asymmetric Laplace distribution; Gibbs sampling; Mixture quantile regression; FINITE MIXTURE;
D O I
10.1080/03610918.2017.1419258
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the finite mixture of quantile regression model from a Bayesian perspective by assuming the errors have the asymmetric Laplace distribution (ALD), and develop the Gibbs sampling algorithm to estimate various quantile conditional on covariate in different groups using the Normal-Exponential representation of the ALD. We conduct several simulations under different error distributions to demonstrate the performance of the algorithm, and finally apply it to analyse a real data set, finding that the procedure has good performance.
引用
收藏
页码:1560 / 1573
页数:14
相关论文
共 50 条
  • [21] Variational Bayesian inference for interval regression with an asymmetric Laplace distribution
    Zhang, J.
    Liu, M.
    Dong, M.
    NEUROCOMPUTING, 2019, 323 : 214 - 230
  • [22] Semiparametric quantile regression using family of quantile-based asymmetric densities
    Gijbels, Irene
    Karim, Rezaul
    Verhasselt, Anneleen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 157
  • [23] Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density (vol 8, pg 479, 2013)
    Sriram, Karthik
    Ramamoorthi, R. V.
    BAYESIAN ANALYSIS, 2017, 12 (04): : 1217 - 1219
  • [24] Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression
    Geraci, Marco
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 57 (13): : 1 - 29
  • [25] Interval-valued linear regression model with an asymmetric Laplace distribution
    Guan, Li
    Li, Mengxiao
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2025, 54 (01) : 161 - 193
  • [26] Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression
    Khare, Kshitij
    Hobert, James P.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 112 : 108 - 116
  • [27] A latent class based imputation method under Bayesian quantile regression framework using asymmetric Laplace distribution for longitudinal medication usage data with intermittent missing values
    Lee, Minjae
    Rahbar, Mohammad H.
    Gensler, Lianne S.
    Brown, Matthew
    Weisman, Michael
    Reveille, John D.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2020, 30 (01) : 160 - 177
  • [28] Robust mixture regression via an asymmetric exponential power distribution
    Jiang, Yunlu
    Huang, Meilan
    Wei, Xie
    Tonghua, Hu
    Hang, Zou
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (05) : 2486 - 2497
  • [29] Parametric quantile regression based on the inverse Gaussian distribution
    Bourguignon, Marcelo
    Gallardo, Diego I.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2025,
  • [30] Quantile regression based on the skewed exponential power distribution
    Arnroth, Lukas
    Vegelius, Johan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (12) : 6189 - 6205