Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression

被引:17
|
作者
Khare, Kshitij [1 ]
Hobert, James P. [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Convergence rate; Geometric drift condition; Markov chain; Monte Carlo; CHAIN MONTE-CARLO; WIDTH OUTPUT ANALYSIS; CONVERGENCE;
D O I
10.1016/j.jmva.2012.05.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the quantile regression model Y = X beta + sigma is an element of where the components of is an element of are i.i.d. errors from the asymmetric Laplace distribution with rth quantile equal to 0, where r is an element of (0, 1) is fixed. Kozumi and Kobayashi (2011) [9] introduced a Gibbs sampler that can be used to explore the intractable posterior density that results when the quantile regression likelihood is combined with the usual normal/inverse gamma prior for (beta, sigma). In this paper, the Markov chain underlying Kozumi and Kobayashi's (2011) [9] algorithm is shown to converge at a geometric rate. No assumptions are made about the dimension of X, so the result still holds in the "large p, small n" case. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:108 / 116
页数:9
相关论文
共 50 条
  • [1] Geometric ergodicity of Polya-Gamma Gibbs sampler for Bayesian logistic regression with a flat prior
    Wang, Xin
    Roy, Vivekananda
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02): : 3295 - 3311
  • [2] Geometric ergodicity of Gibbs samplers in Bayesian penalized regression models
    Vats, Dootika
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4033 - 4064
  • [3] Geometric ergodicity of Gibbs samplers for Bayesian error-in-variable regression
    Brown, Austin
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 1495 - 1516
  • [4] Gibbs sampling methods for Bayesian quantile regression
    Kozumi, Hideo
    Kobayashi, Genya
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) : 1565 - 1578
  • [5] Geometric ergodicity of the Gibbs sampler for the Poisson change-point model
    Fitzpatrick, Matthew
    STATISTICS & PROBABILITY LETTERS, 2014, 91 : 55 - 61
  • [6] Model selection in binary and tobit quantile regression using the Gibbs sampler
    Ji, Yonggang
    Lin, Nan
    Zhang, Baoxue
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 827 - 839
  • [7] Uniform Ergodicity of the Particle Gibbs Sampler
    Lindsten, Fredrik
    Douc, Randal
    Moulines, Eric
    SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (03) : 775 - 797
  • [8] Geometric ergodicity of a hybrid sampler for Bayesian inference of phylogenetic branch lengths
    Spade, David A.
    Herbei, Radu
    Kubatko, Laura S.
    MATHEMATICAL BIOSCIENCES, 2015, 268 : 9 - 21
  • [9] New Gibbs sampling methods for bayesian regularized quantile regression
    Alhamzawi, Rahim
    Alhamzawi, Ahmed
    Ali, Haithem Taha Mohammad
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 110 : 52 - 65
  • [10] GEOMETRIC ERGODICITY OF THE BOUNCY PARTICLE SAMPLER
    Durmus, Alain
    Guillin, Arnaud
    Monmarche, Pierre
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (05): : 2069 - 2098