Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression

被引:17
|
作者
Khare, Kshitij [1 ]
Hobert, James P. [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Convergence rate; Geometric drift condition; Markov chain; Monte Carlo; CHAIN MONTE-CARLO; WIDTH OUTPUT ANALYSIS; CONVERGENCE;
D O I
10.1016/j.jmva.2012.05.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the quantile regression model Y = X beta + sigma is an element of where the components of is an element of are i.i.d. errors from the asymmetric Laplace distribution with rth quantile equal to 0, where r is an element of (0, 1) is fixed. Kozumi and Kobayashi (2011) [9] introduced a Gibbs sampler that can be used to explore the intractable posterior density that results when the quantile regression likelihood is combined with the usual normal/inverse gamma prior for (beta, sigma). In this paper, the Markov chain underlying Kozumi and Kobayashi's (2011) [9] algorithm is shown to converge at a geometric rate. No assumptions are made about the dimension of X, so the result still holds in the "large p, small n" case. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:108 / 116
页数:9
相关论文
共 50 条
  • [21] Approximate Gibbs sampler for Bayesian Huberized lasso
    Kawakami, Jun
    Hashimoto, Shintaro
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (01) : 128 - 162
  • [22] Geometric ergodicity for Bayesian shrinkage models
    Pal, Subhadip
    Khare, Kshitij
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 604 - 645
  • [23] Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers
    Andrieu, Christophe
    Lee, Anthony
    Vihola, Matti
    BERNOULLI, 2018, 24 (02) : 842 - 872
  • [24] On the Geometric Ergodicity of Gibbs Algorithm for Lattice Gaussian Sampling
    Wang, Zheng
    Ling, Cong
    2017 IEEE INFORMATION THEORY WORKSHOP (ITW), 2017, : 269 - 273
  • [25] Geometric ergodicity of Gibbs and block Gibbs samplers for a hierarchical random effects model
    Hobert, JP
    JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 67 (02) : 414 - 430
  • [26] Regularized Bayesian quantile regression
    El Adlouni, Salaheddine
    Salaou, Garba
    St-Hilaire, Andre
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (01) : 277 - 293
  • [27] Bayesian Regularized Quantile Regression
    Li, Qing
    Xi, Ruibin
    Lin, Nan
    BAYESIAN ANALYSIS, 2010, 5 (03): : 533 - 556
  • [28] Bayesian bridge quantile regression
    Alhamzawi, Rahim
    Algamal, Zakariya Yahya
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (03) : 944 - 956
  • [29] Bayesian bivariate quantile regression
    Waldmann, Elisabeth
    Kneib, Thomas
    STATISTICAL MODELLING, 2015, 15 (04) : 326 - 344
  • [30] Bayesian Spatial Quantile Regression
    Reich, Brian J.
    Fuentes, Montserrat
    Dunson, David B.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (493) : 6 - 20