Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression

被引:17
|
作者
Khare, Kshitij [1 ]
Hobert, James P. [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Convergence rate; Geometric drift condition; Markov chain; Monte Carlo; CHAIN MONTE-CARLO; WIDTH OUTPUT ANALYSIS; CONVERGENCE;
D O I
10.1016/j.jmva.2012.05.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the quantile regression model Y = X beta + sigma is an element of where the components of is an element of are i.i.d. errors from the asymmetric Laplace distribution with rth quantile equal to 0, where r is an element of (0, 1) is fixed. Kozumi and Kobayashi (2011) [9] introduced a Gibbs sampler that can be used to explore the intractable posterior density that results when the quantile regression likelihood is combined with the usual normal/inverse gamma prior for (beta, sigma). In this paper, the Markov chain underlying Kozumi and Kobayashi's (2011) [9] algorithm is shown to converge at a geometric rate. No assumptions are made about the dimension of X, so the result still holds in the "large p, small n" case. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:108 / 116
页数:9
相关论文
共 50 条
  • [31] Bayesian composite quantile regression
    Huang, Hanwen
    Chen, Zhongxue
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (18) : 3744 - 3754
  • [32] BAYESIAN QUANTILE REGRESSION METHODS
    Lancaster, Tony
    Jun, Sung Jae
    JOURNAL OF APPLIED ECONOMETRICS, 2010, 25 (02) : 287 - 307
  • [33] Regression Adjustment for Noncrossing Bayesian Quantile Regression
    Rodrigues, T.
    Fan, Y.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 275 - 284
  • [34] INFERENCE FOR NONCONJUGATE BAYESIAN MODELS USING THE GIBBS SAMPLER
    CARLIN, BP
    POLSON, NG
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1991, 19 (04): : 399 - 405
  • [35] Distributed Bayesian Compressive Sensing Using Gibbs Sampler
    Ai, Hua
    Lu, Yang
    Guo, Wenbin
    2012 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2012), 2012,
  • [36] On a Gibbs sampler based random process in Bayesian nonparametrics
    Favaro, Stefano
    Ruggiero, Matteo
    Walker, Stephen G.
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 1556 - 1566
  • [37] Bayesian model order selection using the Gibbs sampler
    Rajan, JJ
    Kawana, A
    ELECTRONICS LETTERS, 1996, 32 (13) : 1156 - 1157
  • [38] Unsupervised learning for Bayesian networks based on Gibbs sampler
    Hosoya, Haruo
    NEUROSCIENCE RESEARCH, 2010, 68 : E108 - E108
  • [39] Bayesian quantile regression models for heavy tailed bounded variables using the No-U-Turn sampler
    de Oliveira, Eduardo S. B.
    de Castro, Mario
    Bayes, Cristian L.
    Bazan, Jorge L.
    COMPUTATIONAL STATISTICS, 2022,
  • [40] Geometric ergodicity of Gibbs samplers for the Horseshoe and its regularized variants
    Bhattacharya, Suman
    Khare, Kshitij
    Pal, Subhadip
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 1 - 57