Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression

被引:17
|
作者
Khare, Kshitij [1 ]
Hobert, James P. [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Convergence rate; Geometric drift condition; Markov chain; Monte Carlo; CHAIN MONTE-CARLO; WIDTH OUTPUT ANALYSIS; CONVERGENCE;
D O I
10.1016/j.jmva.2012.05.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the quantile regression model Y = X beta + sigma is an element of where the components of is an element of are i.i.d. errors from the asymmetric Laplace distribution with rth quantile equal to 0, where r is an element of (0, 1) is fixed. Kozumi and Kobayashi (2011) [9] introduced a Gibbs sampler that can be used to explore the intractable posterior density that results when the quantile regression likelihood is combined with the usual normal/inverse gamma prior for (beta, sigma). In this paper, the Markov chain underlying Kozumi and Kobayashi's (2011) [9] algorithm is shown to converge at a geometric rate. No assumptions are made about the dimension of X, so the result still holds in the "large p, small n" case. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:108 / 116
页数:9
相关论文
共 50 条
  • [41] Bayesian composite Tobit quantile regression
    Alhusseini, Fadel Hamid Hadi
    Georgescu, Vasile
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (04) : 727 - 739
  • [42] Bayesian quantile regression with approximate likelihood
    Feng, Yang
    Chen, Yuguo
    He, Xuming
    BERNOULLI, 2015, 21 (02) : 832 - 850
  • [43] bayesQR: A Bayesian Approach to Quantile Regression
    Benoit, Dries F. .
    van den Poel, Dirk
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (07): : 1 - 32
  • [44] Bayesian Analysis of Composite Quantile Regression
    Alhamzawi R.
    Statistics in Biosciences, 2016, 8 (2) : 358 - 373
  • [45] BAYESIAN EMPIRICAL LIKELIHOOD FOR QUANTILE REGRESSION
    Yang, Yunwen
    He, Xuming
    ANNALS OF STATISTICS, 2012, 40 (02): : 1102 - 1131
  • [46] Bayesian joint-quantile regression
    Hu, Yingying
    Wang, Huixia Judy
    He, Xuming
    Guo, Jianhua
    COMPUTATIONAL STATISTICS, 2021, 36 (03) : 2033 - 2053
  • [47] Bayesian lasso binary quantile regression
    Dries F. Benoit
    Rahim Alhamzawi
    Keming Yu
    Computational Statistics, 2013, 28 : 2861 - 2873
  • [48] Bayesian reciprocal LASSO quantile regression
    Alhamzawi, Rahim
    Mallick, Himel
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (11) : 6479 - 6494
  • [49] Bayesian Quantile Regression for Censored Data
    Reich, Brian J.
    Smith, Luke B.
    BIOMETRICS, 2013, 69 (03) : 651 - 660
  • [50] Variational Bayesian Tensor Quantile Regression
    Jin, Yunzhi
    Zhang, Yanqing
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (02) : 733 - 756