A sandwich likelihood correction for Bayesian quantile regression based on the misspecified asymmetric Laplace density

被引:10
|
作者
Sriram, Karthik [1 ]
机构
[1] Indian Inst Management Ahmedabad, Prod & Quantitat Methods Area, Ahmadabad, Gujarat, India
关键词
Bayesian; Asymmetric Laplace; Credible interval; Misspecification; CONSISTENCY;
D O I
10.1016/j.spl.2015.07.035
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A sandwich likelihood correction is proposed to remedy an inferential limitation of the Bayesian quantile regression approach based on the misspecified asymmetric Laplace density, by leveraging the benefits of the approach. Supporting theoretical results and simulations are presented. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 26
页数:9
相关论文
共 50 条
  • [1] Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density
    Sriram, Karthik
    Ramamoorthi, R. V.
    Ghosh, Pulak
    BAYESIAN ANALYSIS, 2013, 8 (02): : 479 - 504
  • [2] Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood
    Yang, Yunwen
    Wang, Huixia Judy
    He, Xuming
    INTERNATIONAL STATISTICAL REVIEW, 2016, 84 (03) : 327 - 344
  • [3] Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density (vol 8, pg 479, 2013)
    Sriram, Karthik
    Ramamoorthi, R. V.
    BAYESIAN ANALYSIS, 2017, 12 (04): : 1217 - 1219
  • [4] On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood
    Sriram K.
    Ramamoorthi R.V.
    Ghosh P.
    Sankhya A, 2016, 78 (1): : 87 - 104
  • [5] On Bayesian Quantile Regression Using a Pseudo-joint Asymmetric Laplace Likelihood
    Sriram, Karthik
    Ramamoorthi, R. V.
    Ghosh, Pulak
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2016, 78 (01): : 87 - 104
  • [6] Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution
    Benoit, Dries F.
    Van den Poel, Dirk
    JOURNAL OF APPLIED ECONOMETRICS, 2012, 27 (07) : 1174 - 1188
  • [7] The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model
    Gilani, Narjes
    Pourmousa, Reza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [8] The likelihood and Bayesian analyses for asymmetric Laplace nonlinear regression model
    Narjes Gilani
    Reza Pourmousa
    Computational and Applied Mathematics, 2024, 43
  • [9] Bayesian quantile regression with approximate likelihood
    Feng, Yang
    Chen, Yuguo
    He, Xuming
    BERNOULLI, 2015, 21 (02) : 832 - 850
  • [10] BAYESIAN EMPIRICAL LIKELIHOOD FOR QUANTILE REGRESSION
    Yang, Yunwen
    He, Xuming
    ANNALS OF STATISTICS, 2012, 40 (02): : 1102 - 1131