Quantum Computing with Superconducting Circuits in the Picosecond Regime

被引:11
|
作者
Zhu, Daoquan [1 ,2 ,3 ]
Jaako, Tuomas [4 ]
He, Qiongyi [1 ,2 ,3 ]
Rabl, Peter [4 ]
机构
[1] Peking Univ, Frontiers Sci Ctr Nanooptoelect, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, A-1040 Vienna, Austria
基金
奥地利科学基金会; 北京市自然科学基金; 中国国家自然科学基金;
关键词
DISCRETE LOGARITHMS; ALGORITHMS; STATE;
D O I
10.1103/PhysRevApplied.16.014024
中图分类号
O59 [应用物理学];
学科分类号
摘要
We discuss the realization of a universal set of ultrafast single- and two-qubit operations with superconducting quantum circuits and investigate the most relevant physical and technical limitations that arise when pushing for faster and faster gates. With the help of numerical optimization techniques, we establish a fundamental bound on the minimal gate time, which is determined independently of the qubit design solely by its nonlinearity. In addition, important practical restrictions arise from the finite qubit transition frequency and the limited bandwidth of the control pulses. We show that, for highly anharmonic flux qubits and commercially available control electronics, elementary single- and two-qubit operations can be implemented in about 100 ps with residual gate errors below 10-4. Under the same conditions, we simulate the complete execution of a compressed version of Shor's algorithm for factoring the number 15 in about 1 ns. These results demonstrate that, compared to state-of-the-art implementations with transmon qubits, a hundredfold increase in the speed of gate operations with superconducting circuits is still feasible.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Superconducting circuits and quantum information
    You, JQ
    Nori, F
    PHYSICS TODAY, 2005, 58 (11) : 42 - 47
  • [22] Quantum measurements with superconducting circuits
    Quantum Measurement and Control Laboratory, Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai
    400 005, India
    Curr. Sci., 11 (2069-2076):
  • [23] Digital-analog quantum computing of fermion-boson models in superconducting circuits
    Kumar, Shubham
    Hegade, Narendra N.
    Visuri, Anne-Maria
    Bhargava, Balaganchi A.
    Hernandez, Juan F. R.
    Solano, E.
    Albarran-Arriagada, F.
    Barrios, G. Alvarado
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [24] Errors of quantum gates in superconducting quantum circuits
    Song, ZiXuan
    Luo, Kai
    Xiang, Liang
    Cui, JiangYu
    Guo, QiuJiang
    Yung, ManHong
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2025, 55 (04)
  • [25] Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems
    Xiang, Ze-Liang
    Ashhab, Sahel
    You, J. Q.
    Nori, Franco
    REVIEWS OF MODERN PHYSICS, 2013, 85 (02) : 623 - 653
  • [26] Design of Quantum Computing Circuits
    Thapliyal, Himanshu
    Munoz-Coreas, Edgard
    IT PROFESSIONAL, 2019, 21 (06) : 22 - 26
  • [27] Quantum Computing Circuits and Devices
    Humble, Travis S.
    Thapliyal, Himanshu
    Munoz-Coreas, Edgard
    Mohiyaddin, Fand A.
    Bennink, Ryan S.
    IEEE DESIGN & TEST, 2019, 36 (03) : 69 - 94
  • [28] Superconducting route to quantum computing
    Abe, Eisuke
    2023 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, SISPAD, 2023, : 1 - 4
  • [29] Superconducting quantum computing: a review
    He-Liang Huang
    Dachao Wu
    Daojin Fan
    Xiaobo Zhu
    Science China Information Sciences, 2020, 63
  • [30] Superconducting quantum computing: a review
    He-Liang HUANG
    Dachao WU
    Daojin FAN
    Xiaobo ZHU
    ScienceChina(InformationSciences), 2020, 63 (08) : 59 - 90