Quantum Computing with Superconducting Circuits in the Picosecond Regime

被引:11
|
作者
Zhu, Daoquan [1 ,2 ,3 ]
Jaako, Tuomas [4 ]
He, Qiongyi [1 ,2 ,3 ]
Rabl, Peter [4 ]
机构
[1] Peking Univ, Frontiers Sci Ctr Nanooptoelect, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, A-1040 Vienna, Austria
基金
奥地利科学基金会; 北京市自然科学基金; 中国国家自然科学基金;
关键词
DISCRETE LOGARITHMS; ALGORITHMS; STATE;
D O I
10.1103/PhysRevApplied.16.014024
中图分类号
O59 [应用物理学];
学科分类号
摘要
We discuss the realization of a universal set of ultrafast single- and two-qubit operations with superconducting quantum circuits and investigate the most relevant physical and technical limitations that arise when pushing for faster and faster gates. With the help of numerical optimization techniques, we establish a fundamental bound on the minimal gate time, which is determined independently of the qubit design solely by its nonlinearity. In addition, important practical restrictions arise from the finite qubit transition frequency and the limited bandwidth of the control pulses. We show that, for highly anharmonic flux qubits and commercially available control electronics, elementary single- and two-qubit operations can be implemented in about 100 ps with residual gate errors below 10-4. Under the same conditions, we simulate the complete execution of a compressed version of Shor's algorithm for factoring the number 15 in about 1 ns. These results demonstrate that, compared to state-of-the-art implementations with transmon qubits, a hundredfold increase in the speed of gate operations with superconducting circuits is still feasible.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Superconducting quantum computing: a review
    Huang, He-Liang
    Wu, Dachao
    Fan, Daojin
    Zhu, Xiaobo
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (08)
  • [32] Ballistic Asynchronous Reversible Computing in Superconducting Circuits
    Frank, Michael P.
    Lewis, Rupert M.
    2022 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING, ICRC, 2022, : 30 - 35
  • [33] A superconducting adiabatic neuron in a quantum regime
    Bastrakova, Marina, V
    Pashin, Dmitrii S.
    Rybin, Dmitriy A.
    Schegolev, Andrey E.
    Klenov, Nikolay, V
    Soloviev, Igor I.
    Gorchavkina, Anastasiya A.
    Satanin, Arkady M.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2022, 13 : 653 - 665
  • [34] Relativistic Quantum Teleportation with Superconducting Circuits
    Friis, N.
    Lee, A. R.
    Truong, K.
    Sabin, C.
    Solano, E.
    Johansson, G.
    Fuentes, I.
    PHYSICAL REVIEW LETTERS, 2013, 110 (11)
  • [35] A microwave splitter for superconducting quantum circuits
    P. Neilinger
    G. Oelsner
    M. Grajcar
    B. I. Ivanov
    I. L. Novikov
    E. V. Il’ichev
    Technical Physics Letters, 2015, 41 : 314 - 316
  • [36] Integration Technology for Superconducting Quantum Circuits
    Kawabata, Shiro
    2024 IEEE SILICON NANOELECTRONICS WORKSHOP, SNW 2024, 2024, : 9 - 10
  • [37] Superconducting quantum nano-circuits
    Guichard, W.
    Levy, L. P.
    Pannetier, B.
    Fournier, T.
    Buisson, O.
    Hekking, F. W. J.
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2010, 7 (4-8) : 474 - 496
  • [38] Transformed dissipation in superconducting quantum circuits
    Neeley, Matthew
    Ansmann, M.
    Bialczak, Radoslaw C.
    Hofheinz, M.
    Katz, N.
    Lucero, Erik
    O'Connell, A.
    Wang, H.
    Cleland, A. N.
    Martinis, John M.
    PHYSICAL REVIEW B, 2008, 77 (18):
  • [39] SUPERCONDUCTING CIRCUITS Quantum phase slips
    Haviland, David
    NATURE PHYSICS, 2010, 6 (08) : 565 - 566
  • [40] Microwave photonics with superconducting quantum circuits
    Gu, Xiu
    Kockum, Anton Frisk
    Miranowicz, Adam
    Liu, Yu-xi
    Nori, Franco
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2017, 718 : 1 - 102